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Abstract: Epidemic models are used to understand the dynamics of disease transmission and explore
the possible measures for preventing the spread of infection in the population. Disease transmission
is intrinsically random and severely affected by environmental factors. We investigated a stochastic
population model of the susceptible-infected-susceptible (SIS) type, in which infection spreads via
both vertical and horizontal transmission routes. To incorporate stochasticity to the system, white
multiplicative noise was taken into account in the horizontal disease transmission term. We proved that
noise intensity, disease transmission, and recovery rates are potential routes for eradicating the disease.
Furthermore, the parasite population reduces its fitness for some fixed noise if the relative fecundity of
infected hosts and the disease transmission are low. However, if either of these is increased, it observes
enhanced fitness. A simulation study illustrated the system’s analytically dynamic properties and
provided different insights. A case study for the imperfect vertical and horizontal infection transmission
is also presented, supporting some of our observed theoretical results.

Keywords: stochastic population model; environmental factors; perfect and imperfect vertical
transmissions; disease extinction time; persistence; stationary distribution; relative fecundity

1. Introduction

Epidemic models deal with the transmission of infection in a population. They are frequently used
to gain insights into disease dynamics and control mechanisms. Susceptible-infected (SI) type
deterministic compartmental epidemic models with constant rate parameters have been extensively
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used to explore infection-related issues in different populations [1–3]. However, disease transmission
is a random process that varies randomly due to exogenous factors. For example, disease transmission
might be significantly affected by environmental factors like temperature, humidity, rainfall,
etc. [4, 5]. We cannot fully explain all the unknown factors in disease transmission through
deterministic rules alone. Therefore, it is natural to use epidemic models incorporating random
variations to account for environmental unpredictability. Incorporating such random variation in
mathematical models leads to stochastic differential equations. Stochastic models can be derived by
perturbing the model parameters randomly. An alternative approach consists of perturbing the state
variables’ equations, but the interpretability of the effect of the noise is more complicated here [6–8].

Disease transmission from one infected individual to another susceptible individual of a population
is a significant issue, and the persistence of parasites and their virulence largely depend on this
transmission mechanism [9–11]. Horizontal and vertical transmissions are two utterly distinct disease
transmission modes usually followed by different pathogens [12]. Here, we consider a homogeneous
mixture of susceptible and infected populations, where a disease spreads following both horizontal
and vertical transmissions. In horizontal transmission, the infection spreads through contact. On the
contrary, vertical transmission occurs through birth only. Though many parasites spread disease
through multiple pathways, horizontal transmission is the predominant infection-spreading
mode [13]. Infected hosts can give birth to susceptible and infected individuals, so the vertical
transmission may be imperfect [9]. Stochastic population models with only horizontal disease
transmission have been proposed in [14, 15]. These researchers proved the existence of a stationary
distribution condition for eradicating the disease from the population. A simple stochastic
susceptible-infected-recovered (SIR) model with horizontal and vertical transmissions was considered
in [16]. This model, however, entailed the linear birth rate of all populations, contrary to the realistic
density-dependent birth. It is shown that considerable noise is conducive to controlling the infection.
Li et al. [17] analyzed an SIRS epidemic model with a nonlinear incidence rate and environmental
stochasticity and only horizontal transmission of infection with density-independent growth of
susceptible populations. A set of sufficient conditions for the disease extinction and persistence is
provided, and simulation results are presented.

Our main objective is to study a susceptible-infected-susceptible type compartmental
population model with both disease transmission modes and uncertainty/stochasticity in the
horizontal disease transmission term. The deterministic version of this model has similarities to the
model studied by [2, 18, 19]. These researchers obtained the local stability results of the deterministic
models and studied the trade-offs between modes of transmission and virulence. We determine the
local and global stabilities of the corresponding deterministic system to compare its results with the
stochastic model. A set of conditions is provided under which the deterministic solution becomes a
limiting case of the stochastic solution. We also study the law of the disease extinction time. It is
experimentally demonstrated that the relative fecundity of parasites plays a significant role in the
persistence of infection and survival of both the host and parasite populations [19–21]. One way to
measure the parasites’ fitness is to determine the extinction time of the infected host population. We
show how the relative fecundity and the disease transmissibility jointly affect the parasite fitness.

The rest of the paper is organized as follows. The SIS epidemic model is presented in Section 2. A
brief study of the deterministic model is presented in Section 3. The stochastic system analysis is given
in Section 4. The analytical results are illustrated in Section 5 including local and global sensitivity
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analyses. A case study for the imperfect vertical and horizontal infection transmission is provided in
Section 6 to fortify our observed theoretical findings, and the paper ends with a discussion in Section 7.

2. A Stochastic SIS model with horizontal and vertical transmission

The host population is divided into susceptible and infected classes in the presence of some parasite
infection. Let S (t) and I(t) denote the densities of the susceptible and infected host populations at any
time t, respectively. Infected hosts give birth to susceptible and infected individuals at rates bI and e,
respectively. Parameter e thus represents the vertical transmission. The birth rate of the susceptible host
is denoted by bS . Parasites may affect the fecundity and morbidity rates of the host population [22,23].
It is therefore assumed that the death rate of infected hosts is never less than that of susceptible hosts,
i.e., uI ≥ uS , and the birth rate of susceptible hosts (bS ) is higher than the total birth rate of infected
hosts, i.e., bS ≥ bI + e. An infected individual may recover from the infection and join the susceptible
class to be reinfected. Let β be the horizontal disease transmission coefficient, K be the environment’s
carrying capacity, and µ be the recovery rate of infected individuals. The following coupled nonlinear
differential equations can represent the SIS epidemic model:

dS
dt
= bS S [1 −

(S + I)
K

] − uS S − βS I + eI[1 −
(S + I)

K
] + µI,

dI
dt
= bI I[1 −

(S + I)
K

] − uI I + βS I − µI.
(2.1)

This deterministic model has similarities to the model studied by Lipsitch et al. [2], where they
considered µ = 0 so that the underlying epidemic system is of SI type. They obtained the local
stability results of the SI epidemic model and observed the implications of different transmission
modes for the evolution of virulence. Mangin et al. [18], and Ebert et al. [19] considered a similar
deterministic SI epidemic model with horizontal transmission only (where e = 0 and µ = 0) to
understand the trade-offs between modes of transmission and virulence. A discrete version of the
model (2.1) with µ = 0 was also analyzed in [24]. Thus, the SIS model with both transmission modes
is a modification of earlier models. However, our main interest is in the stochastic version of the
above model. In the following, we proved the global stability of the equilibrium points of the
system (2.1), which has not been studied.

Horizontal disease transmission may occur directly through the effective contact between a
susceptible and an infective or indirectly through the environment and intermediate host
populations [25]. Such transmissions are primarily unknown and random. Assuming that the disease
transmission process is random and directly affects the horizontal disease transmission parameter β,
we replace the parameter β by β + σdξt, where σ is a real constant that measures the intensity of the
noise and ξ(t)t≥0 is a standard Wiener process defined on a complete probability space (Ω,F,P) with a
filtration {Ft}t∈ℜ+ and satisfies < dξ(t) >= 0, < dξ(t), dξ(t′) >= δ(t − t′), where δ is the Dirac delta
function. It induces a multiplicative noise and thus avoids the negativity of the solution due to initial
negative fluctuations. Zero becomes a lower bound in this case, even if the initial population size is
small and there is a negative fluctuation of noise [26]. Under this assumption, the stochastic SIS

Mathematical Biosciences and Engineering Volume 22, Issue 4, 846–875.



849

epidemic model (2.1) with horizontal transmission and imperfect vertical transmission becomes

dS =
[
bS S

{
1 −

S + I
K

}
− uS S − βS I + eI

{
1 −

S + I
K

}
+ µI

]
dt − σS Idξt,

dI =
[
bI I

{
1 −

S + I
K

}
− uI I + βS I − µI

]
dt + σS Idξt.

(2.2)

Here, we analyze stochastic system (2.2), which considers density-dependent growth of host
populations and horizontal as well as imperfect vertical transmissions of infection. We provide the
local and global dynamics of the corresponding deterministic system with respect to the deterministic
basic reproduction number. The persistence and extinction conditions of disease for the stochastic
system are derived. The stochastic process’ ergodicity and the stationary distribution criteria are
proved. We present different simulation results to illustrate the theoretical results and provide insights
into parasites’ fitness.

3. Study of the deterministic model

Deterministic system (2.1) includes an additional recovery term of the infected host with respect
to the model studied in [2]. Local stability of different equilibrium points of the system (2.1) with no
recovery (i.e., µ = 0) has been proved [2, 24]. Here, we start by recalling (without proof) the local
dynamics of system (2.1), where recovery is considered, and then provide a new global stability result.

3.1. Basic reproduction number

The basic reproductive number is an essential measure in epidemics and is critical in eradicating
infection. It is defined as the number of new cases arising from a single infected individual when
introduced into a susceptible population group [27]. The disease cannot be established in the host
population if the basic reproduction number is less than unity. Otherwise, the disease can invade the
population. We measure the basic reproduction number of deterministic system (2.1) through the next-
generation matrix [28].

Proposition 1. The basic reproduction number, RD
0 , of deterministic system (2.1) is

RD
0 =

bIuS + βŜ bS

bS (uI + µ)
. (3.1)

Proof. In the absence of infection, the susceptible population has equilibrium density Ŝ = K
(
1 − us

bs

)
.

The Jacobian matrix of the epidemic model (2.1) evaluated at (Ŝ , 0) is

J11 =

 bS −
2bS Ŝ

K − uS e + µ − bS Ŝ
K −

eŜ
K − βŜ

0 bI

(
1 − Ŝ

K

)
+ βŜ − (uI + µ)

 . (3.2)

The sub-matrix of J11 associated with the infectious compartment is a one-by-one matrix

J12 = bI

(
1 −

Ŝ
K

)
+ βŜ − (uI + µ) = F − V,

Mathematical Biosciences and Engineering Volume 22, Issue 4, 846–875.



850

where F = bI

(
1 − Ŝ

K

)
+ βŜ and V = (uI + µ). The next-generation matrix is then given by

FV−1 =
1

uI + µ

[
bI

(
1 −

Ŝ
K

)
+ βŜ

]
=

bIuS

bS (uI + µ)
+
βŜ

uI + µ
=

bIuS + βŜ bS

bS (uI + µ)
.

The basic reproduction number of system (2.1) is the spectral radius of the scalar matrix FV−1 [28] and
is thus

RD
0 = ρ(FV−1) =

bIuS + βŜ bS

bS (uI + µ)
. (3.3)

□

As mentioned earlier, infection will die out from the population if the basic reproduction number is
less than 1. A straightforward way to reduce the basic reproduction number is to decrease the horizontal
transmission coefficient β. Increasing parameter µ can also reduce the value of the basic reproduction
number and may be a parameter of interest.

3.2. Local and global stability of the equilibrium points

From a biological point of view and for the model’s applicability, solutions should be non-negative
at any time, and the deterministic model solutions should stay bounded. For this, one can easily prove
the following result in the line of [29].

Proposition 2. Solutions of system (2.1) are positively invariant and uniformly bounded in the domain

G ⊂ R2
+, where G =

{
(S , I) ∈ R2

+ | 0 ≤ S (t), I(t) ≤ K
}
.

The local stability results (without proof) may be summarized as follows.

Theorem 1. Model (2.1) has three non-negative equilibrium points.

(i) The trivial equilibrium point E(1)
0 =(0, 0) is locally asymptotically stable if bS < uS and bI < uI+µ.

(ii) The disease-free equilibrium point E(1)
1 = (Ŝ , 0), where Ŝ = K(1 − uS

bS
), uS < bS , is locally

asymptotically stable if RD
0 < 1.

(iii) The infected (interior) equilibrium point E(1)
∗ = (S ∗, I∗), having equilibrium densities

S ∗ =
−B
2A
+

1
2A

√
B2 − 4AC and I∗ =

1
bI

[K(bI − uI − µ) + (βK − bI)S ∗],

exists and becomes locally asymptotically stable under conditions

bS ≥ bI + e, µ + uI < bI < βK and RD
0 > 1,

where A = βKb2
I

[βK(bI + e) + bI(bS − bI − e)], B = −K(bS − uS ) + K
bI

[(bI − uI − µ)(Kβ + bS + e) −

(e + µ)(βK − bI)] +
2Ke(βK−bI )

bI
2 (bI − uI − µ), C = − K2

bI
2 [bI − uI − µ][µ(bI + e) + euI].

Biologically, all populations go extinct if the birth rate of susceptible hosts is less than its death rate
and the ensemble clearance rate of infected hosts exceeds its birth rate. Noticeably, the stability of the
trivial equilibrium ceases the existence of the other two equilibrium points.
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The disease-free equilibrium point exists if the birth rate of susceptible hosts is larger than its death
rate and becomes stable if the basic reproduction number is less than unity. It is worth mentioning that
local stability criteria of E(1)

1 makes E(1)
∗ and E(1)

0 unstable.
The infected equilibrium E(1)

∗ exists, and both populations persist in a stable state if the birth rate
of susceptible hosts is higher than the total birth rate of infected hosts, i.e., bS ≥ bI + e. In addition,
the vertical birth rate is higher than its ensemble clearance rate of infected hosts but lower than the
maximum disease transmission rate through horizontal transmission, i.e., µ + uI < bI < βK, and the
basic reproduction number is greater than unity. Thus, the basic reproduction number R(D)

0 must be less
than unity to make the system disease-free. This is achievable through parameter µ, which transforms
an SI system into an SIS one.

Local asymptotic stability guarantees that the solutions will reach equilibrium if they start close to
the equilibrium value. However, if the considered initial values are far from equilibrium, they may not
arrive at the equilibrium point. To assure that the equilibrium point’s stability does not depend on the
initial values, it is necessary to show its global stability. We prove that the local stability results of
different equilibrium points are sufficient for their global stability.

Theorem 2. Each equilibrium of the model (2.1) is locally and globally asymptotically stable
throughout domain G ⊂ R2

+, unless the solution starts from the other two equilibrium points.

Proof. We first show that there is no periodic orbit in D ⊂ G, where D={(S , I): 0 < S < K, 0 < I < K}.
For this, we define a continuously differentiable function B(S , I) in D, where B(S , I)=1/(S I). Defining
F = (F1, F2), where F1 = bS {(1− S+I

K )−uS −βI}S +eI[1− S+I
K ]+µI, F2 = bI I[1− S+I

K ]−uI I+βS I−µI,
and noting that I ≤ K by Proposition 2, one then has

div(BF) =
∂(BF1)
∂S

+
∂(BF2)
∂I

= −
bS

KI
−

bI

KS
−
µ

S 2 +
e

S 2

(I − K)
K

< 0. (3.4)

Hence, by Bendixson-Dulac criteria [30], system (2.1) has no periodic orbit in the interior of D. Since
E(1)

0 is the only stable equilibrium, there is no periodic orbit in the domain of definition. Therefore,
E(1)

0 is globally asymptotically stable whenever it is locally asymptotically stable. Similar arguments
prove that local stability criteria of E(1)

1 and E(1)
∗ also assure their global stability if the solutions are not

started from the equilibrium point E(1)
∗ for the first case and E(1)

1 for the second case. □

4. Study of the stochastic model

In this section, we present our major results of the SIS epidemic model with both modes of disease
transmission. We use the Lyapunov analysis method, Ito’s formula, Chebyshev’s inequality, the law of
large numbers, and the other standard techniques to obtain new results for system (2.2).

A population explosion may occur in the case of a multiplicative noise [31]. It is, therefore,
necessary to show that such an explosion does not happen here. Also, biological populations should
always be nonnegative. For this, we prove the stochastic solutions’ global existence, positivity,
and boundedness.

Proposition 3. For any initial value (S (0), I(0)) ∈ R2
+, there exists a unique solution (S (t), I(t)) of the

system (2.2) for t ≥ 0, and the solution remains in R2
+ with probability 1.
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Proof. Since the coefficients of system (2.2) satisfy local Lipschitz conditions, there is a unique positive
local solution on [0, νe), where νe is the explosion time [32]. We show that this solution is global,
meaning νe = ∞. One gets from (2.2)

d
dt

(S + I) = bS S
(
1 −

S + I
K

)
+ eI

(
1 −

S + I
K

)
+ bI I

(
1 −

S + I
K

)
− uS S − uI I

≤ {bS S + eI + bI I}
(
1 −

S + I
K

)
− uS S − uI I

≤ {bS S + (bI + e)I}
(
1 −

S + I
K

)
≤ bS (S + I) −

bS

K
(S + I)2 [∵ bS ≥ bI + e],

giving
0 ≤ lim

t→∞
(S (t) + I(t)) ≤ K, =⇒ 0 ≤ lim

t→∞
S (t), lim

t→∞
I(t) ≤ K.

Let m0 > 0 be sufficiently large so that S (0), I(0) lie within the interval [ 1
m0
,m0]. For any integer

m ≥ m0, define a sequence of stopping times by

νm = inf
{
t ∈ [0, νe] : S (t) <

(
1
m
,m

)
or I(t) <

(
1
m
,m

) }
,

where we set inf Φ = ∞ (Φ represents the empty set). Since νm is non-decreasing as m→ ∞, one gets
ν∞ = limn→∞ νm. Then, ν∞ ≤ νe almost surely (a.s.). Now, we prove that ν∞ = ∞ a.s. If this statement
is violated, then there exists M > 0 and δ ∈ (0, 1) such that P{ν∞ ≤ M} > δ. Thus, there is an integer
m1 ≥ m0 such that

P{νm ≤ M} ≥ δ ∀m ≥ m1. (4.1)

Define a C2 function V : R2
+ → R+ by

V(S , I) = (S − 1 − log S ) + (I − 1 − log I).

Using Ito’s formula, we have

dV(S , I) =
(
1 −

1
S

) [
bS S

(
1 −

S + I
K

)
− uS S − βS I + eI

(
1 −

S + I
K

)
+ µI

]
dt

+
1
2
σ2I2dt +

1
2
σ2S 2dt +

(
1 −

1
I

) [
bI I

(
1 −

S + I
K

)
− uI I + βS I − µI

]
dt

− σ

(
1 −

1
S

)
S I dξ(t) + σ

(
1 −

1
I

)
S I dξ(t)

≤
[
(uS + uI + µ) + (bS + bI + e + β)K + σ2K2

]
dt + σ(I − S ) dξ(t).

Let U = (uS + uI + µ) + (bS + bI + e + β)K + σ2K2. Integrating both sides of (4.2) from 0 to νm ∧ M,
one gets ∫ νm∧M

0
dV(S (u), I(u)) ≤

∫ νm∧M

0
Udu +

∫ νm∧M

0
(σS dξ1(u) + σI dξ2(u)) . (4.2)
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Expectation in both sides yields

E (V(S (νm ∧ M), I(νm ∧ M))) ≤ V(S (0), I(0)) + UM.

Set Gm = {νm ≤ M} for m ≥ m1 and from (4.1), we have P(Gm) ≥ δ. For every τ ∈ Gm, S (νm, τ), I(νm, τ)
are equal to m or 1

m , implying that V(S (νm, τ), I(νm, τ)) is no less than min {m − 1 − ln(m), 1/m −
1 − ln(1/m)}. Therefore, we have

V(S (0), I(0)) + UM ≥ E
(
1Gm(τ)V(S (νm), I(νm))

)
≥

δ min
{

m − 1 − ln m,
1
m
− 1 − ln

1
m

}
,

where 1Gm(τ) is the indicator function of Gm. Then, m→ ∞ leads to the contradiction

∞ = V(S (0), I(0)) + UM < ∞.

Therefore, ν∞ = ∞ a.s. This completes the proof. □

Proposition 4. Solutions of system (2.2) are stochastically bounded on any time interval for any initial
value (S (0), I(0)) ∈ R2

+.

Proof. From (2.2), we have

d(S + I) = bS S
(
1 −

S + I
K

)
+ (bI + e)I

(
1 −

S + I
K

)
− uS S − uI I

≥ M(S + I)
(
1 −

S + I
K

)
− N(S + I),

where M = min {bS , bI + e}, N = min {uS , uI}

= (M − N)(S + I) −
M
K

(S + I)2.

Therefore, limt→∞(S + I) ≥ K
M (M − N) = L̄ (say).

Define the function
W(S , I) = et(S θ + Iθ) = etU(S , I),

for (S , I) ∈ R2
+, θ > 1 and U(S , I) = S θ + Iθ. By Ito’s formula, we have

dW(S , I) = et
[
θS θ−1

(
bS S

(
1 −

S + I
K

)
− uS S − βS I + eI

(
1 −

S + I
K

)
+ µI

)
+ θIθ−1

(
bI I

(
1 −

S + I
K

)
− uI I + βS I − µI

)
+
θ(θ − 1)

2

(
σ2S θI2 + σ2IθS 2

)]
dt + etθ

[
−σS θI dξ(t) + σIθS dξ(t)

]
≤ et

[
θKθ−1(bS + e + µ)K + θKθ−1(bI + βK)K + θ(θ − 1)σ2Kθ+2

]
dt

+ etθ
[
−σS θI dξ(t) + σIθS dξ(t)

]
= Aetdt + θσet

[
− S θI dξ(t) + IθS dξ(t)

]
,
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where A = θKθ−1(bS + e + µ)K + θKθ−1(bI + βK)K + θ(θ − 1)σ2Kθ+2.
Using Proposition 3 and from (4.3), one gets

E
(
et∧νmU(S (t ∧ νm), I(t ∧ νm))

)
≤ W(S (0), I(0)) + AE

(∫ t∧νm

0
eudu

)
.

Making m→ ∞, we have

E
(
etU(S (t), I(t))

)
≤ W(S (0), I(0)) + A(et − 1),

implying
E (U(S (t), I(t))) ≤ e−tW(S (0), I(0)) + A − Ae−t.

Defining |Y(t)| =
(
S 2(t) + I2(t)

) 1
2 and noting that |Y(t)|θ = (S 2(t) + I2(t))

θ
2 ≤ 2

θ
2 max

{
S θ(t), Iθ(t)

}
≤

2
θ
2

(
S θ + Iθ

)
, we obtain E

(
|Y(t)|θ

)
≤ 2

θ
2
(
e−tW(S (0), I(0)) + A − Ae−t) . Thus, lim supt→∞ E

(
|Y(t)|θ

)
≤

2
θ
2 A < ∞. Therefore, there exists a positive constant η such that lim supt→∞ E

(√
Y(t)

)
< η. For any

ν > 0, ω = η
2

ν2
> 0, and using the Chebyshev’s inequality, P(|Y(t)| > ω) ≤ E(

√
Y(t))
√
ω
, one gets

lim sup
t→∞

P (|Y(t)| > ω) ≤
η
√
ω
= ν.

Hence, the result is proven. □

4.1. Stochastic extinction and persistence of infection

One important concern in epidemiology is the eradication of infection from the population. The
average infected population in the time interval [0, t] is 1

t

∫ t

0
I(κ) dκ. The infected population is said

to be strongly non-persistent or extinct if the supremum of its limiting average population is zero. In
this case, the infection is said to be removed from the system. On the other hand, if the infimum of its
limiting average population is always positive, then the I population is said to be strictly persistent [33].
In this case, the eventual average I will always stay away from zero, and the infection consistently
remains in the system. In the following two theorems, we provide sufficient conditions to eliminate the
disease or persist almost surely in stochastic system (2.2).

Before proving these results, we state the following well-known lemma.

Lemma 1. [34] Suppose w(t) ∈ C(Ω × [0,∞),R0
+), where R0

+ = {p | p > 0, p ∈ R}.
(i) If there exist two positive constants T and κ0 such that

ln(w(t)) ≤ κt − κ0

∫ t

0
w(θ)dθ + Σn

i=1αiBi(t), ∀t ≥ T, κ ∈ R,

where αi (1 ≤ i ≤ n) are constants, then lim supt→∞
1
t

∫ t

0
w(θ)dθ ≤ κ

κ0
almost surely (a.s.) i f κ ≥ 0;

limt→∞ w(t) = 0 a.s. i f κ < 0.

(ii) If there exist three positive constants T, κ, κ0 such that

ln(w(t)) ≥ κt − κ0

∫ t

0
w(θ)dθ + Σn

i=1αiBi(t), ∀t ≥ T,
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then

lim inf
t→∞

1
t

∫ t

0
w(θ)dθ ≥

κ

κ0
a.s.

Using the above definition of extinction and the Lemma 1(i), we present a vital result that guarantees
disease eradication in the stochastic system.

Theorem 3. If RS
0 =

β2

2σ2 +bI

uI+µ
< 1, then the infected population of model (2.2) goes to extinction

almost surely.

Proof. Let (S (t), I(t)) be a solution of the system (2.2) with initial value (S (0), I(0)). Applying Ito’s
formula in the second equation of system (2.2), we have

d(ln I(t)) =
[
bI

(
1 −

S + I
K

)
− uI + βS − µ −

1
2
σ2S 2

]
dt + σS dξ(t)

=

[
bI −
σ2

2

(
S −

β

σ2

)2

+
β2

2σ2 − (uI + µ) −
bI

K
(S + I)

]
dt + σS dξ(t)

≤

[
β2

2σ2 + bI − (uI + µ)
]

dt + σS dξ(t).

Integration on the both sides of (4.3) from 0 to t, and division by t yields

ln I(t)
t
≤

[
β2

2σ2 + bI − (uI + µ)
]
+

ln I(0)
t
+

M(t)
t
, (4.3)

where, M(t) =
∫ t

0
σS (τ)dξ(τ) is the local martingale with M(0) = 0. Moreover,

< M,M >t=
(∫ t

0
σS (τ)dξ(τ)

)2
=

∫ t

0
σ2S 2(τ)dτ ≤ σ2K2t. One then has lim supt→∞

<M,M>t
t ≤ σ2K2 < ∞

a.s. Therefore, by the law of a large number [35], limt→∞
M(t)

t = 0 a.s. Taking limit superior on both
sides of (4.3) and using the Lemma 1, we obtain

lim sup
t→∞

ln I(t)
t
≤
β2

2σ2 + bI − (uI + µ) < 0,

whenever RS
0 =

β2

2σ2 +bI

uI+µ
< 1. Thus, we have limt→∞ I(t) = 0 for RS

0 < 1. This completes the proof. □

The condition RS
0 < 1 may be considered the equivalent basic reproduction number for the

stochastic system. The stochastic basic reproduction number (RS
0 ) prescribes some restrictions on the

system parameters and noise. If the condition is satisfied, the infected population will go extinct, and
the system will be disease-free. One can easily observe that RS

0 is a decreasing function of the
recovery rate, µ, and the noise intensity, σ. The recovery rate may be increased by taking suitable
external measures; consequently, RS

0 can be made less than unity to make the eradication process
possible. Similarly, additional noise may also be helpful in disease elimination. However, the disease
transmission parameter β and the birth rate bI of the infected host are positively correlated with RS

0 .
The following theorem is an ergodic behavior of I population of stochastic system (2.2).
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Theorem 4. If bI−uI−µ
bI
K +

A(bI+e)
bS
−

AuI
bS

> 0, the infected population I persists in mean a.s., and

lim inf
t→∞

< I(t) >=
bI − uI − µ

bI
K +

A(bI+e)
bS
−

AuI
bS

, where A = min
{
β −

bI

K
,

Kσ2

2

}
.

Proof. Integrating both the Equations of (2.2) from 0 to t and dividing by t, one obtains

S (t) − S (0)
t

+
I(t) − I(0)

t
= bS

〈
S

(
1 −

S + I
K

) 〉
− uS < S > +e

〈
I
(
1 −

S + I
K

) 〉
+ bI

〈
I
(
1 −

S + I
K

) 〉
− uI < I >,

where < x(t) >= 1
t

∫ t

0
x(s) ds. Since S and I are stochastically ultimately bounded, limt→∞

S (t)−S (0)
t = 0

and limt→∞
I(t)−I(0)

t = 0. Eq (4.4) then becomes

bS

〈 (
S −

S 2

K

) 〉
+ e < I > +bI < I > −uI < I > ≥ bS

〈
S

(
1 −

S + I
K

) 〉
− uS < S > +e

〈
I
(
1 −

S + I
K

) 〉
+ bI

〈
I
(
1 −

S + I
K

) 〉
− uI < I > .

Taking limit as t goes to∞, we have

lim
t→∞

〈 (
S −

S 2

K

) 〉
≥

uI − (bI + e)
bS

< I > . (4.4)

Using Ito’s formula in the second equation of system (2.2), one gets

d(lnI(t)) =
[
(bI − uI − µ) +

(
βS −

bI

K
S −

1
2
σ2S 2

)
−

bI

K
I
]

dt + σS dξ(t)

≥

[
(bI − uI − µ) + A

(
S −

S 2

K

)
−

bI

K
I
]

dt + σS dξ(t),

where A = min
{
β − bI

K ,
Kσ2

2

}
. Integrating both sides of (4.5) from 0 to t, dividing by t, and using (4.4),

we get

ln I(t)
t
≥ (bI − uI − µ) −

{
bI

K
+

A(bI + e)
bS

−
AuI

bS

}
< I > +

ln I(0)
t
+
σ

t

∫ t

0
S (τ)dξ(τ). (4.5)

Since I is bounded, limt→∞
ln I(0)

t = 0 and by the argument given previously,
limt→∞

σ
t

∫ t

0
S (τ)dξ(τ) = 0. Therefore, using Lemma 1, we have

lim inf
t→∞

< I(t) > ≥
bI − uI − µ

bI
K +

A(bI+e)
bS
−

AuI
bS

. (4.6)

Thus, if the condition stated in the theorem holds then the infected population persists almost surely
for all future time. □
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4.2. Asymptotic stability

It is worth mentioning that stochastic system (2.2) has no explicit equilibrium density, unlike the
deterministic system (2.1). Instead, stochastic solutions fluctuate around the deterministic equilibrium
or a fixed value. We provide below the conditions under which the behavior of the stochastic system is
similar to that of the deterministic equilibrium solution.

Theorem 5. Let (S (t), I(t)) be the solution of (2.2) with initial value (S (0), I(0)) ∈ R2
+ and the stability

criteria of E∗ hold. If bS
K (S ∗ + 1) + g1L̄ + bI I∗

K + uS −
(

3
2bs + e + bI

)
> 0, e

K (S ∗ + I∗) + (bS+bI )S ∗

K +
bI
K I∗ + g2L̄ + c1bI

K + uI −
(

bS
2 + 2(e + bI)

)
> 0 and 2S ∗bS

K +
e(S ∗+I∗)

K +
bI (S ∗+I∗)

K − bS − bI − e > 0, then

lim supt→∞
1
t

∫ t

0
[(S (τ) − S ∗)2 + (I(τ) − I∗)2]d(τ) ≤ G1σ

2 a.s., where E∗ = (S ∗, I∗) is the endemic

equilibrium of the deterministic system and G1 =
K2(K2+

c1
2 I∗)

H , H = min
{

bS
K (S ∗ + 1) + g1L̄ + bI I∗

K + uS −(
3
2bs + e + bI

)
, e

K (S ∗ + I∗) + (bS+bI )S ∗

K + bI
K I∗ + g2L̄ + c1bI

K + uI −
(

bS
2 + 2(e + bI)

) }
, g1 = min

{
e
K ,

bS
K

}
,

g2 = min
{

e
K ,

bI
K

}
and L̄ = K

M (M − N).

Proof. Define a positive function G = 1
2 (S − S ∗ + I − I∗)2 + c1

(
I − I∗ − I∗log I

I∗

)
, where c1 is a positive

constant to be determined later. At (S ∗, I∗), we have

bS S ∗
(
1 −

S ∗ + I∗

K

)
+ eI∗

(
1 −

S ∗ + I∗

K

)
= uS S ∗ + βS ∗I∗ − µI∗

βS ∗I∗ + bI I∗
(
1 −

S ∗ + I∗

K

)
= uI I∗ + µI∗.

Using (4.7) and Ito’s formula, one obtains

dG = (S − S ∗ + I − I∗)
[
bS S

(
1 −

S + I
K

)
− usS + eI

(
1 −

S + I
K

)
+ bI I

(
1 −

S + I
K

)
− uI I

]
dt + σ2S 2I2dt

+ c1

(
1 −

I∗

I

) [{
bI I

(
1 −

S + I
K

)
− uI I + βS I − µI

}
dt + σS Idξ(t)

]
+

c1

2
σ2S 2I∗dt

=

[
bs −

bS

K
(S + S ∗ + 1) −

eI
K
−

bI I∗

K
− uS

]
(S − S ∗)2 +

[
e + bI −

e
K

(S ∗ + I∗ + I) −
(bS + bI)S ∗

K

−
bI

K
(I + I∗) −

c1bI

K
− uI

]
(I − I∗)2 +

[
bS −

bS

K
(2S ∗ + S + I) + e −

e
K

(S ∗ + I∗ + 2I) + bI

−
bI

K
(s∗ + I∗ + 2I) − uI − uS + c1

(
β −

bI

K

) ]
(S − S ∗)(I − I∗) + σ2S 2I2dt +

c1

2
σ2S 2I∗dt

+ c1σ(I − I∗)S dξ(t)

≤

[
bs −

bS

K
(S ∗ + 1) − g1L̄ −

bI I∗

K
− uS

]
(S − S ∗)2 +

[
e + bI −

e
K

(S ∗ + I∗) −
(bS + bI)S ∗

K
−

bI

K
I∗

− g2L̄ −
c1bI

K
− uI

]
(I − I∗)2 +

[
bS −

2S ∗bS

K
+ e −

e(S ∗ + I∗)
K

+ bI −
bI(S ∗ + I∗)

K

+ c1

(
β −

bI

K

) ]
(S − S ∗)(I − I∗) +

[bS

K
(S + I) +

2(e + bI)I
K

]
|(S − S ∗)(I − I∗)| + σ2S 2I2dt

+
c1

2
σ2S 2I∗dt + c1σ(I − I∗)S dξ(t).
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Choosing c1 =
1
β−

bI
K

[
2S ∗bS

K +
e(S ∗+I∗)

K +
bI (S ∗+I∗)

K − bS − bI − e
]
> 0 and using |(S − S ∗)(I − I∗)| ≤

1
2

(
(S − S ∗)2 + (I − I∗)2

)
, (4.7) becomes

dG ≤ −
{ [

bS

K
(S ∗ + 1) + g1L̄ +

bI I∗

K
+ uS −

(
3
2

bs + e + bI

)]
(S − S ∗)2 +

[ e
K

(S ∗ + I∗) +
(bS + bI)S ∗

K

+
bI

K
I∗ + g2L̄ +

c1bI

K
+ uI −

(
bS

2
+ 2(e + bI)

) ]
(I − I∗)2

}
+ σ2S 2I2dt +

c1

2
σ2S 2I∗dt

+ c1σ(I − I∗)S dξ(t),

where L̄ = K
M (M − N).

Define H = min
{

bS
K (S ∗ + 1) + g1L̄ + bI I∗

K + uS −
(

3
2bs + e + bI

)
, e

K (S ∗ + I∗) + (bS+bI )S ∗

K + bI
K I∗ + g2L̄ +

c1bI
K + uI −

(
bS
2 + 2(e + bI)

) }
. Integrating (4.7) from 0 to t, one gets

G(t) −G(0) ≤ −H
∫ t

0
[(S (τ) − S ∗)2 + (I(τ) − I∗)2]d(τ) + σ2K2

(
K2 +

c1

2
I∗
)

t

+ c1σ

∫ t

0
(I(τ) − I∗)S (τ)dξ(τ)

∴

∫ t

0
[(S (τ) − S ∗)2 + (I(τ) − I∗)2]d(τ) ≤

G(0)
H
+
σ2K2

(
K2 + c1

2 I∗
)

t

H
+

c1σ

H

∫ t

0
(I(τ) − I∗)S (τ)dξ(τ).

Let N1(t) =
∫ t

0
(I(τ)−I∗)S (τ)dξ(τ), which is a continuous martingale and N1(0) = 0. Also, < N1,N1 >t=(∫ t

0
(I(τ) − I∗)S (τ)dξ(τ)

)2
=

∫ t

0
(I(τ) − I∗)2S 2(τ)d(τ) ≤ 4K4t and lim supt→∞

<N1,N1>t
t ≤ 4K4 < ∞ a.s.

Therefore, by the law of large numbers [35], limt→∞
N1(t)

t = 0 a.s. Combining these results and then
dividing (4.7) by t and taking limit superior, we have

lim sup
t→∞

1
t

∫ t

0
[(S (τ) − S ∗)2 + (I(τ) − I∗)2]d(τ) ≤ G1σ

2 a.s., where G1 =
K2

(
K2 + c1

2 I∗
)

H
. (4.7)

Hence, the theorem is proven. □

Furthermore, if σ→ 0, then

lim sup
t→∞

1
t

∫ t

0
[(S (τ) − S ∗)2 + (I(τ) − I∗)2]d(τ)→ 0.

Therefore, limt→∞ S (t) → S ∗, limt→∞ I(t) → I∗, and the stochastic solution tends to the deterministic
equilibrium solution. This implies that if the noise intensity is low, the stochastic system behaves
similarly to the asymptotic solution of the deterministic system, provided the restrictions in the above
theorem hold.
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4.3. Probability density function

In this part, we compute the exact expression of the density function of the stationary distribution.
The S -compartment of deterministic model (2.1), under usual assumption of constant population S (t)+
I(t) = N, reads

dS
dt
= bS S

(
1 −

N
K

)
− uS S − βS (N − S ) + e(N − S )

(
1 −

N
K

)
+ µ(N − S ). (4.8)

Under the stochastic perturbation of β to β + σξ(t), the above equation becomes

dS
dt
= bS S

(
1 −

N
K

)
− uS S − βS (N − S ) + e(N − S )

(
1 −

N
K

)
+ µ(N − S ) − σS (N − S )ξ(t). (4.9)

In the case of white noise perturbation with ξ(t), the probability density function p(S , t) of S (t) is
governed by the classic Fokker-Planck equation

∂p(S , t)
dt

+
∂

∂S
[h(S )p(S , t)] =

1
2
∂2

∂S 2 [σ2(S )p(S , t)], (4.10)

where, h(S ) = bS S
(
1 − N

K

)
−uS S −βS (N −S )+ e(N −S )

(
1 − N

K

)
+µ(N −S ) and σ(S ) = −σS (N −S ).

The closed-form stationary solution p0(S ) = limt→∞ p(S , t) of the Fokker-Planck equation is given by

p0(S ) = N

σ2(S )exp
(
2
∫ S h(ω)

σ2(ω)dω
)
, where N is the normalizing factor. Upon simplification, the closed-

form expression is given by

p0(S ) =
N

σ2 e
2
 bS (1− N

K )−uS
σ2N(N−S )

−
e(1− N

K )+µ
σ2NS


× S

2
σ2N2 {(bS−e)(1− N

K )+(µ−uS−βN)−σ2N2}

× (N − S )−
2

σ2N2 {(1− N
K )(bS+e)−(uS−µ+βN)+σ2N2}.

(4.11)

For the I compartment, we similarly assume that q(I, t) is the pdf that is governed by the Fokker-Planck
equation

∂q(I, t)
dt

+
∂

∂I
[h′(I)q(I, t)] =

1
2
∂2

∂I2 [σ′2(I)q(I, t)], (4.12)

where h′(I) = bI I
(
1 − N

K

)
− uI I + β(N − I)I − µI and σ′(I) = σ(N − I)I. The closed form stationary

solution is given by
q0(I) = lim

t→∞
q(I, t),

where

q0(I) =
N ′

σ′2(I)
exp

(
2
∫ I h′(ω)
σ′2(ω)

dω
)
,

and N ′ is the normalizing factor. Simplifying the above expression, we obtain

q0(I) =
N ′

σ2 e
2

σ2N(N−I) {bI(1− N
K )−uI−µ}

× I
2

σ2N2 {bI(1− N
K )−uI−µ+βN−σ2N2}×

(N − I)
2

σ2N2 {uI+µ+σ
2N2−βN−bI(1− N

K )}.
(4.13)
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5. Simulation results

We present simulation results of stochastic system (2.2). The following system parameters are
considered fixed unless it is stated: bS = 0.2, bI = 0.03, uS = 0.1, uI = 0.15, e = 0.02, K = 1, β =
0.5, and µ = 0.1 [9]. Without loss of generality, we set K = 1, effectively selecting an appropriate
spatial unit for measuring population densities, as outlined in Lipsitch et al. [9]. The initial value is
assumed to be (S (0), I(0)) = (0.6, 0.3).

5.1. Time evolution

Figure 1. Time series of ten runs of system (2.2) for σ = 0.4 ((a),(b),(e)) and σ = 0.8
((c),(d),(f)). Third row: average susceptible and infected populations of 100 time series of
the stochastic system.

The time evolution of a stochastic system is different for each run. However, that of the deterministic
system is unique for a given parameter set. Thus, due to inherent randomness, a considerable difference
may exist between the solutions of the stochastic system for different runs. To illustrate this, we have
presented 10 simulation results for two distinct noises in the first two rows of Figure 1. The first
column shows that the disease persists for low values of the noise (σ = 0.4) when the parameter set
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satisfies the conditions of Theorem 4 with bI−uI−µ
bI
K +

A(bI+e)
bS
−

AuI
bS

= 22 > 0. The second column illustrates that the

disease dies out for higher values of the noise (σ = 0.8) when the parameter set satisfies the conditions
provided by Theorem 3 with RS

0 = 0.9012 < 1. The solution trajectories here differ in each simulation,
though the initial condition and parameter values remain the same. It is, therefore, more justified to
present the average behavior of the stochastic solutions. In the last row, we have given the mean value
of 100 solutions of stochastic system (2.2) for σ = 0.4 ((a),(b),(e)) and σ = 0.8 ((c),(d),(f)), which
show similar behaviors.

5.2. Steady-state

It is worth mentioning that the noise-induced stochastic system (2.2) has no steady-state value. In
Theorem 5, we have proven that the stochastic and deterministic systems behave similarly if the noise
intensity is low. However, if the noise intensity is high, the stochastic solution largely deviates from
its deterministic counterpart. We illustrate such behavior of the system in Figure 2 for two noises:
σ = 0.05 and σ = 0.2. The conditions of the stationary distribution (Theorem 5) are satisfied here.

We further examine the probabilistic smoke cloud around the deterministic steady state. We repeat
the simulation 10, 000 times and plot the values of S and I populations at t = 120 in Figure 3. This
figure shows that species densities are primarily concentrated in the neighbourhood of deterministic
concentrated in the neighborhood of deterministic equilibrium value (S ∗, I∗) = (0.47, 0.014) (blue
point) if the noise intensity is low (σ = 0.05). Observe that the frequency distribution of the
susceptible population (S ) is distributed in the range 0.45–0.48 around its equilibrium value
S ∗ = 0.47 (Figure 3(b)), and the same for the infected population (I) is distributed in the range
0.005 − 0.025 around its equilibrium value I∗ = 0.014 (Figure 3(c)). This shows the strength of the
stabilizing factors of the population interaction compared to the diffusive effects of the random
environmental fluctuations [36].

Figure 2. Asymptotic behavior of stochastic system (2.2) (solid line) and deterministic
system (2.1) (dashed line) for low noise intensity, σ = 0.05 (left figure) and higher noise
σ = 0.2 (right figure). Other parameters are shown in Figure 1.
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Figure 3. Scatter plot and histograms of susceptible and infected populations of system (2.2)
around deterministic steady state (blue dot) obtained at t = 120 for 10, 000 simulations.
Figure 3(a)–(c): σ = 0.05. Figure 3(d)–(f): σ = 0.15. Here, β = 0.5, µ = 0.1 and other
parameters are shown in Figure 1.

Indeed, the probability cloud is compact if the interaction strength can overcome the noise.
However, if the interaction strength is weak compared to the intensity of the environmental variance,
the cloud covers a larger area (Figure 3(d)) if the noise intensity is high (σ = 0.15). The
corresponding frequency distributions (Figures 3(e),(f)) show that S and I are distributed over a more
extensive range of 0.41–0.5 and 0.002–0.045, respectively, around their deterministic equilibrium
values. This reveals that the stochastic system does not deviate too much from its deterministic
system if the noise is low, but it does if it is high.

We further examined the evolution of histograms of S and I populations, as an approximation of
their probability density functions. We repeat the simulation 50,000 times to plot the histograms. As
time progresses, one can observe a shift in the mean and spread of both S (t) and I(t). At time t = 20,
the distribution of S (t) is centered around 0.31 and I(t) around 0.07, indicating that a smaller proportion
of the population is infected (Figure 4(a)). At t = 40, the distribution is shifted to around 0.40, and I(t)
has a peak around 0.02. This may indicate an increase in the susceptible individuals as the infected
population temporarily decreases, possibly due to recovery or a reduction in transmission (Figure 4(b)).
At t = 80, S (t) has a mean near 0.46, and I(t) near 0.01, with both distributions showing a greater
variability (Figure 4(d). As time progresses, S (t) tends to fluctuate near 0.48 and I(t) near 0.01, which
indicates that the system is approaching a stationary distribution, even though individual realizations
of S (t) and I(t) still experience random fluctuations. This is useful for analyzing long-term behavior
in stochastic models, as it suggests that the system has an average state around that it oscillates due to
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random environmental noise.

Figure 4. Histograms of susceptible (S (t)) and infected (I(t)) populations at time points
t = 20, 40, 60, 80, 100, 120, and 200 for 50,000 simulations, based on the stochastic
model (2.2). Each histogram shows the distribution of S (t) (left) and I(t) (right) across
simulations, capturing stochastic fluctuations of the system. The distributions illustrate the
model’s approach toward a stationary distribution, where S (t) and I(t) reach stable ranges
with persistent fluctuations due to the noise. The noise intensity σ = 0.2.
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5.3. Disease extinction time

Figure 5. (a): Mean extinction time distribution calculated from 100 simulations of the
infected population of stochastic system (2.2) for different β and σ, keeping other parameters
fixed as in Figure 1(b)–(e): Extinction time is plotted in the β and bI plane for four different
values of σ.

It is observed that the noise intensity (σ) and the disease transmission rate (β) play a pivotal role
in the extinction and persistence of the disease. We present, in Figure 5(a), the mean extinction time
of the infected population of the stochastic system (2.2) with the variations in β and σ. To find the
extinction time numerically, we repeat the simulation 100 times for each pair of (β, σ) and plot the
mean of the extinction time of 100 simulations. The infected population is considered extinct if it goes
below 0.0001. Moreover, RS

0 < 1 is satisfied throughout the considered range of β and σ. Figure 5(a)
shows that the extinction time is longer if β is high andσ is low. However, the extinction time decreases
if β is low or σ is high. We also investigate how disease extinction time is influenced by the parameter
variations in β and bI . We select four values ofσ, namely, 0.2, 0.4, 0.6, 0.8. For each of theseσ values,
we jointly vary β and bI and record the mean extinction time for 100 simulations (see Figure 5(b)–(e)).
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It has been observed that disease extinction takes a shorter time if both β and bI are low. However,
disease extinction time is prolonged for higher values of β and bI . We further observe that when σ is
low, disease extinction time in the whole parametric space of β and bI is high compared to the higher
value of σ. This reveals that stronger environmental noise helps eradicate the disease from the system
early, implying that it may act as a regulatory mechanism to control the disease.

To unveil the underlying law of extinction time, we plot the mean of extinction time of 100
simulations with the variation of σ for three particular values of β: 0.1, 0.2, and 0.3 (Figure 6(a)).
Mean extinction time gradually decreases as σ increases. An exponential curve fits it. A similar figure
was drawn with three fixed values of σ, 0.2, 0.5, and 0.8, for the variation of β (Figure 6(b)). In the
latter case, the disease extinction time gradually increases with the increase of the disease
transmission coefficient. The mean extinction time fits the positive exponential curve.

Figure 6. (a) Means and standard deviations of extinction time of 100 simulations for
different values of β and σ, as a function of σ (left) and of β (right). Exponential models
are fitted to each curve. Other parameters remain fixed as in Figure 1.

Figure 7. Infected population’s extinction time for different values of µ and different pairs of
(σ, β). Other parameters remain fixed as in Figure 1.
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It is shown that RS
0 is a decreasing function of the recovery rate, µ. Here, we explore the disease

extinction scenario for µ for different values of σ and β. Figure 7 shows that the extinction time curves
have two distinct natures for the variations in µ. If σ is much higher than β (cyan curve, bottom), the
extinction time follows the negative exponential law. As the difference between σ and β decreases
while σ remains higher (purple and green curves), the extinction time increases. On the other hand,
if σ and β are both elevated and nearly equal in magnitude, the extinction time becomes substantially
larger, exhibiting a slower rate of decline with respect to µ. All these have a long tail, implying that a
shorter extinction time of the disease is possible for an extended range of µ.

5.4. Parasite fitness

As mentioned earlier, parasite infectivity and the relative fecundity of infected hosts are critical
for parasite fitness. The survival fitness of parasites depends on how long the infected hosts persist
in the system. For this, we plot (Figure 8) the extinction time of infected hosts from the system for
the simultaneous variations in β and bI+e

bS
. Recall the ensemble fecundity of the infected population as

bI+e, and that of the susceptible as bS . The ratio bI+e
bS

denotes the relative fecundity of the infected host
population. By our assumption, bS ≥ bI+e and therefore, the ratio bI+e

bS
is always less than or equal to 1.

If the force of infection is not too high (β < 0.6), then the infection eradication time increases with the
increasing relative fecundity of the infected host for some fixed value of noise. However, for the higher
force of infection (β > 0.6), the relative fecundity of infected hosts has a negligible effect on extinction
time. The trend remains the same if the noise intensity is altered. Thus, the parasite fitness is low if the
relative fecundity and disease transmissibility are low but gradually increase if any of them increase.

Figure 8. Parasite fitness is measured in terms of the extinction time of the infected host. The
mean extinction time of the infected hosts is calculated from 100 simulations of stochastic
system (2.2) for different β and bI+e

bS
, keeping other parameters fixed as in Figure 1 with

σ = 0.5. This shows that parasite fitness increases with the increasing values of β and bI+e
bS

.
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5.5. Sensitivity analysis

5.5.1. Local sensitivity analysis

To assess how variations in parameters control disease transmission and progression with
pseudo-recovery, a sensitivity analysis of model (2.1) is conducted numerically, following the
approach outlined in [37, 38]. The normalized forward-sensitivity index of a variable, v, that depends
differentiably on a parameter, p, is defined as

Υv
p =
∂v
∂p
×

p
v
.

We numerically evaluate the local time-dependent normalized sensitivity index for the variables S and
I in Figure 9. The positive sensitivity of S with respect to µ and negative sensitivity of I is expected,
as the higher recovery rate would naturally shift more individuals from the infected state back to the
susceptible state. The oscillatory behavior here might be due to the model’s feedback between S and
I, where changes in recovery (through µ) indirectly affect S and I by influencing the rate at which
individuals transition between susceptible and infected states.

Figure 9. Time-dependent normalized sensitivity of the susceptible (S ) and infected (I)
populations with respect to the recovery parameter µ in the model (2.1). The blue curve
represents the sensitivity of S , showing positive values that indicate an increase in S with
higher µ. The red curve represents the sensitivity of I, which remains negative, suggesting
that an increase in µ reduces I.

5.5.2. Global sensitivity analysis

In a sensitivity analysis based on variance, such as the Sobol method, the total variance in the model
output is decomposed to attribute portions of this variance to different input parameters [39]. Let Y
represent the model output (either S or I) and θ be a vector of model parameters (β, bi, bs, e,K, µ, ui, us).
The variance of Y , Var(Y), can be decomposed as:

Var(Y) =
∑

i

Varθi(Y) +
∑
i< j

Varθi,θ j(Y) + · · · + Varθ1,...,θn(Y),
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where Varθi(Y) is the partial variance due to parameter θi alone, while Varθi,θ j(Y) represents the variance
due to the interaction between θi and θ j, and so on. The first-order Sobol index S i for each parameter
θi is defined as

S i =
Varθi(Y)
Var(Y)

.

This index quantifies the direct effect of parameter θi on Y .

Figure 10. Global sensitivity analysis for variables S and I based on Sobol indices. The
pie charts represent the relative influence of each parameter on the variable’s variance. Each
slice’s sizes correspond to each parameter’s contribution to the variance, with larger slices
indicating a stronger influence on the respective variable.

In the above pie chart (please see Figure 10), each segment represents the proportion of first-order
variance in S or I. A larger segment implies a higher influence of that parameter on the respective
model output. In the first-order Sobol index of S , we observe that the parameters β and uS strongly
influence the variance of S , indicating that variation in these parameters significantly affects the
susceptible population. In the right panel, uS and uI have the highest impact on the infected
population.

6. Case study

Here, we present a case study for the imperfect vertical and horizontal infection transmission that
supports some of our observed theoretical results of the deterministic and stochastic systems. The
parasite Holospora Undulata frequently infects the protozoa Paramecium caudatum and uses both the
horizontal and vertical transmission pathways [40]. P. caudatum are filter feeders and ingest
infectious forms of Holospora Undulata while taking food from the water. Lunn et al. [41] performed
a microcosm study, where the 34 days time series data of P. caudatum and its specialist bacterial
parasite Holospora Undulata under different nutrient concentrations (high and low) have been
investigated. We fitted our SIS deterministic and stochastic models with these 34 days of experimental
data corresponding to high nutrient concentrations following the optimization technique presented in
Appendix. During the estimation of the parameter set, we maintain the model assumptions uI ≥ uS
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and bS ≥ bI + e. The experimental values are plotted on a logarithmic scale for ease of fitting. The
best-fit parameter set thus obtained by fitting the stochastic system (2.2) is as follows:

bS = 1.5, K = 35.9, uS = 0.16, β = 0.18, e = 0.0026, µ = 0.7, bI = 0.11, uI = 0.77, and σ = 0.035.

The deterministic basic reproduction number R(1)
0 for this parameter set is 4.1801, implying the disease

is persistent. The average value (solid line) of 1000 solutions of the stochastic system (2.2) with the
above parameter set has been plotted in Figure 11 with respect to time (day) with 95% confidence
interval (CI). This shows that the stochastic solution matches the experimental data except at some
initial data points.

Figure 11. Fitting of experimental data of susceptible and infected Paramecium with the
stochastic system (2.2) and deterministic system (2.1). Circles represent the experimental
values, and the solid line represents the average value of 1000 solutions of the stochastic
system (2.2) with noise intensities σ = 0.035. Initial value (5.147, 0.001) was considered
following [41]. The shaded region is the 95% confidence interval for the stochastic solution.

7. Discussion

Mathematical models of epidemics have helped understand the disease spread in a population.
After the benchmark work of Kermack and McKendrick [42], many mathematical models have been
proposed and analyzed, considering the epidemiological demands. Most of these models are
deterministic types represented by ordinary differential equations. Deterministic models have been
criticized for viewing all the rate parameters as constant, even though these constants constantly
fluctuate due to the various unknown environmental noises. Uncertainty is an integral part of
modeling biological phenomena due to the complexity and lack of knowledge of microscopic events
involved in the system. In particular, the disease transmission phenomena are random, and the
transmission rate depends on various factors. Incorporating such randomness in a model leads to
stochastic differential equation models.

In this paper, we consider an SIS-type stochastic epidemic model, where the disease is transmitted
through horizontal and vertical transmission modes. To incorporate stochasticity in the model, we
introduce a white noise in the horizontal disease transmission term, the predominant disease
transmission mechanism. The fluctuation in the transmission rate usually occurs around some mean
value. Therefore, the error term follows a normal distribution, enabling us to approximate it by a
white noise [43].
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Eradication or control of various emerging and reemerging diseases is a global challenge.
Environmental factors like temperature, humidity, rainfall, and pollution significantly affect disease
persistence. Knowing the different routes for theoretically eradicating an infection from the
population is essential. Our mathematical analysis revealed that the population can be disease-free by
modulating some parameters and the noise intensity. We have shown that if the stochastic basic
reproduction number, RS

0 , can be made less than unity, the disease can be eradicated from the system.
It is observed that noise intensity plays a pivotal role in eliminating and has an inverse relationship
with RS

0 . The environmental noise can make a system disease-free if it significantly affects the
transmission mechanism and makes RS

0 < 1. On the contrary, RS
0 is directly proportional to the disease

transmission coefficient. Thus, RS
0 may exceed the threshold value if the disease transmissibility

increases. Therefore, the management strategy should be to reduce horizontal disease transmissibility.
Our numerical computations revealed that the disease eradication time follows a negative exponential
law with increasing noise intensity. In contrast, the disease transmission coefficient follows the
positive exponential law.

Furthermore, disease eradication is also possible with respect to controllable parameter µ. This
parameter measures the recovery rate of the infected population and can be used in the disease
eradication process. Moreover, an infected host may recover from the infection due to its immune
mechanism. Recovery of infected hosts is also possible with the help of some external measures.
Extinction time follows either a negative exponential or Gaussian law for some given noise and
disease transmissibility values. In the former case, the noise must be high, or the transmission
coefficient must be low. In the latter case, the effects of noise and disease transmissibility should be
reversed. The eradication time will be significantly quicker if the recovery rate is high. On the other
hand, disease management would be more challenging if the noise intensity is low and the disease
transmissibility is high.

Several researchers have demonstrated that parasites have a detrimental effect on the host’s
fecundity. The survival of parasites depends on the infected host density and the extinction time of the
infected host population. Thus, parasites are expected to evolve towards higher relative fecundity of
the infected host to enhance fitness. Our simulation result for simultaneous variation of the disease
transmission coefficient and relative fecundity rate shows that parasite fitness increases with
increasing relative fecundity of parasites when the transmissibility is low. The relative fecundity of
infected hosts, however, has a negligible effect on the extinction time of the infected host population
and, consequently, on the parasite survival fitness if the disease transmissibility of parasites is high. A
similar trend is also maintained if the noise intensity is altered.

We utilizie a susceptible-infected-susceptible framework, which is appropriate for diseases where
recovered individuals do not gain permanent immunity and can reenter the susceptible population.
However, many infectious diseases exhibit immunity following infection, aligning more closely with
the SIR or SIRS model frameworks, where recovered individuals gain immunity before potentially
returning to the susceptible class. Integrating stochastic effects and vertical transmission in these
models could reveal important nuances in epidemic behavior under varying immunity dynamics with
the increasing complexity of mathematical treatment [16, 44, 45]. One of the central limitations of the
white noise perturbation is that increasing the white noise leads to quicker disease extinction, which is
typically not observed in real-world epidemics. Therefore, the white noise model can underestimate
the severity of disease transmissions [46, 47]. This is also counterintuitive because the increase of
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noise in the transmission parameter can be a relaxation of the restrictions of contact among species.
Thus, the increased noise that could lead to rapid disease eradication might be mathematically correct,
but the real-world implications of such a conclusion must be carefully examined. However,
temporally correlated noise (modeled via the Ornstein-Uhlenbeck process) introduces more realistic
fluctuations in transmission rate and does not necessarily foster disease extinction due to increased
stochastic noise [48, 49].
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Appendix

Deterministic model parameters were estimated from the experimental data set through the
nonlinear least square technique. To begin, we considered an arbitrary parameter set
Λ = (Λ1,Λ2, ....,Λn) and then minimized the sum of squared differences between the experimental
data Y = (y1, y2, ..., yn) and the corresponding model solution data. We used lsqcurvefit, an
optimization toolbox from Matlab, to solve the nonlinear least square problem. Lsqcurvefit fits a
function to a set of data points using the Levenberg-Marquardt (LM) algorithm, which is an iterative
process used to find the minimum of the sum of squares of the nonlinear function [50]. It can be
understood as an amalgamation of steepest descent and Gauss-Newton methods [51]. The assumed
objective function is defined as

J = argmin
n∑

j=1

(
g(t j,Λ) − y j

)2
,

where g(t j,Λ) is the model solution at time step t j at which the solution is to be estimated, and n is the
total number of data points. The optimization process will provide the best fit solution g(t j, Λ̃) to the
experimental data corresponding to the optimal parameter set Λ̃ = (Λ̃1, Λ̃2, ...., Λ̃n), which should

Mathematical Biosciences and Engineering Volume 22, Issue 4, 846–875.

https://dx.doi.org/https://doi.org/10.1098/rspa.1927.0118
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2010.06.015
https://dx.doi.org/https://doi.org/10.1016/j.apm.2008.05.001
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.01.014
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2016037
https://dx.doi.org/https://doi.org/10.1098/rspa.2022.0568
https://dx.doi.org/https://doi.org/10.1016/j.mbs.2024.109226
https://dx.doi.org/http://www.ics.forth.gr/lourakis/levmar


875

satisfy the model’s basic assumptions. After estimating parameters for the deterministic system, we
estimated the noise intensity for the stochastic system to obtain a good agreement between the output
and the experimental data. We computed the corresponding r-squared value for stochastic simulation
data and experimental data to find the suitable noise strength. Here, we considered 10,000 different
random values of the noise intensity σ between 0 and 1 through Latin hypercube sampling. Then, for
each of these 10, 000 values of σ, the stochastic system was simulated 100 times. Taking mean of
the 100 simulations, the r−squared was computed between the average stochastic simulation output
and the experimental data. Noise intensity was selected for which the r-squared was maximum.
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