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Summary. Neurobiological data such as electroencephalography measurements pose a sta-
tistical challenge due to low spatial resolution and poor signal-to-noise ratio, as well as large
variability from subject to subject. We propose a new modelling framework for this type of data
based on stochastic processes.Stochastic differential equations with mixed effects are a popular
framework for modelling biomedical data, e.g. in pharmacological studies.Whereas the inherent
stochasticity of diffusion models accounts for prevalent model uncertainty or misspecification,
random-effects model intersubject variability. The two-layer stochasticity, however, renders pa-
rameter inference challenging.Estimates are based on the discretized continuous time likelihood
and we investigate finite sample and discretization bias. In applications, the comparison of, for
example, treatment effects is often of interest. We discuss hypothesis testing and evaluate by
simulations. Finally, we apply the framework to a statistical investigation of electroencephalog-
raphy recordings from epileptic patients. We close the paper by examining asymptotics (the
number of subjects going to 1) of maximum likelihood estimators in multi-dimensional, non-
linear and non-homogeneous stochastic differential equations with random effects and included
covariates.

Keywords: Approximate maximum likelihood; Asymptotic normality; Consistency; Covariates;
Electroencephalography data; Local asymptotic normality; Mixed effects; Non-homogeneous
observations; Random effects; Stochastic differential equations

1. Introduction

Many biomedical studies are based on image data, which are characterized by a high time
resolution, but also a low signal-to-noise ratio. The same happens with electroencephalography
data, which are measurements of electrical activitity measured from electrodes on the scalp
and are proxies of underlying brain activity. This high frequency and noisy nature of the data
lends itself naturally to be modelled by continuous time stochastic processes. Moreover, data
are often multi-dimensional and repeated on a collection of subjects. The noise may be due
to factors such as internal and external fluctuations, difficult experimental conditions or a
collection of multiple unmeasured effects, e.g. non-specified feedback mechanisms or genetic
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variation. The intrasubject variability in longitudinal data asks for a model that incorporates
system noise. Any systematic intersubject variability is usually well explained by the inclusion of
covariate information, e.g. treatment regime, gender or specifics of experimental conditions. The
remaining intersubject variability can then be taken care of by random effects. The main goal is
to model electroencephalography measurements from multiple channels and to draw statistical
inference about the underlying dynamics, but we are also motivated by a compartment model
arising in a recent pharmacological study based on image data. Both types of data are measured
at high frequency, i.e. the sampling frequency is fast compared with the typical timescales of the
observed system. This enables us to employ techniques facilitating the use of continuous time
stochastic processes. We therefore propose a new modelling framework where the observed time
series are assumed to be generated from a multi-dimensional stochastic differential equation
(SDE), which accounts for systematic and random intersubject variability through covariates
and random effects.

The brain consists of a complex network of interconnected regions, with interactions that
evolve dynamically during normal activity, and which shows pathological patterns during epilep-
tic seizures. A common tool to infer the dynamical patterns is multisensor recordings of brain
activity, such as electroencephalography recordings. They are often used to diagnose epilepsy,
which causes abnormalities in the electroencephalography measurements. It is of great interest
to establish the functional network giving rise to the measured electroencephalography data, and
most methods are non-parametric using correlations and signal processing techniques (Prado
et al., 2001; Qin and Wang, 2008; Stephen et al., 2014; Zhang et al., 2015; Wulsin et al., 2016;
Ruegamer et al., 2018). Here, we take a different road, modelling parametrically the data by
interacting stochastic processes, where the estimated parameters yield measures of the connec-
tivity and the changes that are incurred during epileptic seizures. This can serve as alternative
and supplementary measures to characterize the dynamics. Furthermore, the modelling of elec-
troencephalography data, and in particular epileptic seizures, is challenging because of the large
amount of heterogeneity in the electroencephalography signal between channels and across in-
dividuals. Thus, the standard way is to do individual analyses on each subject. We shall instead
approach this with random effects to gain statistical power and to find common characteristics
over the population.

Models that combine SDEs and random effects (i.e. so-called stochastic differential mixed ef-
fects models (SDMEMs)) have become a popular framework for modelling biological data (Guy
et al., 2015; Donnet et al., 2010; Møller et al., 2010; Leander et al., 2014; Picchini et al., 2008;
Picchini and Forman, 2019). They come with three advantages: firstly, they capture intersubject
variations by incorporation of random effects. Secondly, they account for model uncertainty
or environmental fluctuations by their inherent stochasticity. Lastly, they remedy the otherwise
omnipresent issue of the inconsistent drift estimator (Kessler et al., 2012) in plain SDEs (only
fixed effects), when the observation time horizon is finite, because the mixed effects approach
facilitates pooling of data across subjects, which leads to unbiasedness of the drift estimator as
the number of subjects approaches ∞.

However, the flexibility and robustness of SDMEMs come at a price and bear particular chal-
lenges in terms of statistical inference. The data likelihood in these models is generally intractable,
for two reasons: on the one hand, the likelihood for (non-linear) SDE models is analytically not
available, rendering parameter inference for standard SDE models a non-trivial problem in itself.
On the other hand, the likelihood must be integrated over the distribution of the random effects.
Thus, numerical or analytical approximations are inevitable. The likelihood for SDE models can
be approximated in various ways. Given discrete time observations, the likelihood is expressed
in terms of the transition density. Approximation methods for the transition density reach from
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solving the Fokker–Planck equation numerically (Lo, 1988), over standard first-order (Euler–
Maruyama) or higher order approximation schemes and simulation-based approaches (Peder-
sen, 1995; Durham and Gallant, 2002) to a closed form approximation via Hermite polynomial
expansion (Aı̈t-Sahalia, 2002). If continuous time observations are assumed (e.g. if high fre-
quency data are available), transition densities are not needed and the likelihood can be obtained
from the Girsanov formula (Phillips and Yu, 2009). Popular analytical approximation techniques
for general non-linear mixed effects models are first-order conditional estimation (Beal and
Sheiner, 1981) and the Laplace approximation (Wolfinger, 1993). A computational alternative
is the expectation–maximization algorithm, or stochastic versions thereof (Delyon et al., 1999).

In the context of SDMEMs, the above-mentioned approximation methods have been com-
bined in various ways, depending on whether observations are modelled in discrete or in contin-
uous time (here we do not consider measurement noise). For discrete time observations, Hermite
expansion of the transition density has been combined with Gaussian quadrature algorithms
and Laplace’s approximation (Picchini et al., 2010; Picchini and Ditlevsen, 2011). Mixed effects
that enter the diffusion coefficient were investigated in Delattre et al. (2015, 2018). The case of
continuous time observations of a univariate SDMEM with Gaussian and mixture of Gaussian
mixed effects entering the drift linearly was considered in Delattre et al. (2013, 2016) and Maitra
and Bhattacharya (2018a).

Two aspects that are important in modelling biomedical data were not covered by these
works: on the one hand, the inclusion of covariate information on both fixed and random
effects. The only case which has previously been treated is the inclusion of covariates on random
effects, but with no fixed effects (Maitra and Bhattacharya, 2018b); on the other hand, the
theoretical investigations of estimators when the state process is modelled by a multivariate,
time inhomogeneous and non-linear SDE. The lack of both in a model implies considerable
restrictions for practitioners and the purpose of this paper is to fill this gap.

If the drift function is linear in the parameters, the standard asymptotic properties of the
maximum likelihood estimator (MLE) in multi-dimensional, time homogeneous, non-linear
SDMEMs can be shown by a natural extension of the proofs in Delattre et al. (2013). In par-
ticular, the model likelihood turns into a neat expression, and all remaining model complexities
(multi-dimensionality of the state, non-linearity and covariates) are conveniently hidden in the
sufficient statistics. The results in Delattre et al. (2013) on the discretization error which arises
when continuous time statistics are replaced by their discrete time versions hold as well in the
more complex model set-up. Their approach has, however, two drawbacks. The first is model
related: it is assumed that observations are identically distributed, which impairs the inclusion
of subject-specific covariate information. The other drawback is proof related: the regularity
assumptions imposed are rather restrictive; for instance, the density of the random effects may
not be smooth. More importantly, the proofs for multi-dimensional processes and parameters
become tedious with long matrix calculations. This can be avoided by the more general approach
which builds on L2-differentiability and the local asymptotic normality property of a sequence
of statistical models (Le Cam, 2012; Ibragimov and Has’minskii, 2013). Therefore, we approach
the theoretical investigations from the more general local asymptotic normality perspective.

In regression models, the convergence of the average Fisher information (FI) is a standard
assumption which facilitates the verification of MLE asymptotics considerably. We address this
condition in the SDMEM set-up and point out the difficulties that arise here, when observations
are not identically distributed.

The paper is structured as follows. Section 2 introduces the model framework and hypothesis
testing. Moreover, we exemplify the framework with covariates for affine mixed effects. Section
3 is devoted to a simulation study in an example of the linear model, which is a submodel of
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the model that is used for the electroencephalography data, and which is common in pharma-
cokinetics and is motivated by a recent study on selenium metabolism in humans (Große Ruse
et al., 2015). Here, we study finite sample and discretization bias of the estimation procedure
and properties regarding hypothesis testing, where we investigate the effect of a drug treatment
(as encoded by a covariate with levels treatment and placebo). We then apply the SDMEM
framework to electroencephalography recordings of epileptic patients in Section 4, in a more
general linear model with the purpose of investigating how channel interactions differ between
non-seizure and seizure states. We then discuss our results and framework. Finally, we conclude
with an investigation of asymptotic properties of the MLE, in particular for the linear model
of main interest, and present some further technical details.

2. Maximum likelihood estimation for stochastic differential mixed effects models
with covariates

This section considers parameter inference when observations are independent, but not nec-
essarily identically distributed: a setting that naturally occurs when covariate information is
included in the model formulation.

2.1. Model formulation
We consider N r-dimensional stochastic processes Xi = .Xi

t/0�t�T i whose dynamics are governed
by the SDEs

dXi
t =F.Xi

t , Di
t ,μ,φi/dt +Σ.t, Xi

t/dWi
t , 0� t �T i, Xi

0 =xi
0, i=1, : : : , N: .1/

The r-dimensional Wiener processes Wi = .Wi
t /t�0 and the d-dimensional random vectors φi

are defined on a filtered probability space .Ω, F , .Ft/t�0, P/, which is sufficiently rich to ensure
independence of all random objects Wi and φi, i=1, : : : , N. The d-dimensional vectors φi, i=
1, : : : , N, are the so-called random effects. They are assumed to be F0 measurable and have a
common (usually centred) distribution which is specified by a (parameterized) Lebesgue density
g.ϕ;ϑ/dϕ. The parameter ϑ∈Rq−p is unknown, as well as the fixed effect μ∈Rp. The combined
parameter θ= .μ,ϑ/ is the object of statistical inference and is assumed to lie in the parameter
space Θ, which is a bounded subset of Rq. The Di : [0, T i]→Rs encode subject-specific covariate
information and are assumed to be known. They can also encode a general time dependence,
which not necessarily is subject specific. The functions F : Rr+s+p+d → Rr, Σ : [0, T ] × Rr →
Rr×r, with T = max1�i�N T i, are deterministic and known and the initial conditions xi

0 are r-
dimensional random vectors. We assume standard regularity assumptions on the drift (including
the Di) and diffusion functions to assure

(a) existence and uniqueness of the solution to equations (1) and
(b) existence and good behaviour of the Radon–Nikodym derivative

qi.μ,ϕ/ :=qi.μ,ϕ; Xi/= dQi
μ,ϕ

dQi
μ0,ϕ0

.Xi/

= exp
{∫ T i

0
.F.Xi

s, Di
s,μ,ϕ/−F.Xi

s, Di
s,μ0,ϕ0//

′
Γ−1.s, Xi

s/dXi
s

− 1
2

∫ T i

0
.F.Xi

s, Di
s,μ,ϕ/−F.Xi

s, Di
s,μ0,ϕ0//

′
Γ−1.s, Xi

s/.F.Xi
s, Di

s,μ,ϕ/

+F.Xi
s, Di

s,μ0,ϕ0//ds},
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where Γ = ΣΣ′ and Qi
μ,ϕ is the distribution of Xi conditioned on an observed φi =ϕ (and

μ0 and ϕ0 are fixed). The function qi is the conditional likelihood for subject i given that we
have observed the random effect φi =ϕ. Therefore, the unconditional likelihood for subject i is
pi.θ/ :=pi.θ; Xi/=∫Rd qi.μ,ϕ/g.ϕ;ϑ/dϕ.

We observe Xi at time points 0 � ti0 < ti1 < : : : < tini
= T i and the inference task consists in

recovering the ‘true’ underlying θ based on observations Xi
ti0

, : : : , Xi
tin

, i=1, : : : , N. We approach
this inference task by first supposing that we have the entire paths .Xi

t/0�t�T i , i= 1, : : : , N, at
our disposal. On the basis of these we derive the continuous time MLE and discretize it in a
second step. The bias that is introduced by the discretization is investigated theoretically and by
simulations.

2.2. Affine Gaussian mixed effects
In many applications the fixed and random effects enter the drift in an affine manner:

F.Xi
t , Di

t ,μ,φi/=A.Xi
t , Di

t/+B.Xi
t , Di

t/μ+C.Xi
t , Di

t/φ
i: .2/

An example of equation (2) is a widely used class of compartment models, which we illustrate
in a simulation study in Section 3, and in our main application in Section 4, where we analyse
electroencephalography data from epileptic patients. Likelihood-based inference then becomes
explicit if the random effects are Gaussian distributed: g.ϕ;Ω/=N .0, Ω/.ϕ/. The separation of
μ and φi in equation (2) enables the modeller to impose random effects on only a selection of
fixed effects. The conditional likelihood turns into the compact expression

qi.μ,ϕ/= exp.μ′U1i − 1
2μ

′V1iμ+ϕ′U2i − 1
2ϕ

′V2iϕ−ϕ′Ziμ/

with the sufficient statistics

U1i =
∫ T i

0
B.Xi

s, Di
s/

′
Γ−1.s, Xi

s/{dXi
s −A.Xi

s, Di
s/ds},

V1i =
∫ T i

0
B.Xi

s, Di
s/

′
Γ−1.s, Xi

s/B.Xi
s, Di

s/ds,

U2i =
∫ T i

0
C.Xi

s, Di
s/

′
Γ−1.s, Xi

s/{dXi
s −A.Xi

s, Di
s/ds},

V2i =
∫ T i

0
C.Xi

s, Di
s/

′
Γ−1.s, Xi

s/C.Xi
s, Di

s/ds,

Zi =
∫ T i

0
C.Xi

s, Di
s/

′
Γ−1.s, Xi

s/B.Xi
s, Di

s/ds:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.3/

Integration over ϕ gives the unconditional likelihood for subject i:

pi.θ/= 1√
det.I +V2iΩ/

exp
[
{U ′

1i −U ′
2iR

i.Ω/Zi}μ− 1
2
μ′{V1i −Z′

iR
i.Ω/Zi}μ+ 1

2
U ′

2iR
i.Ω/U2i

]
,

.4/

with Ri.Ω/= .V2i +Ω−1/
−1

. In particular, the MLE μ̂N of the fixed effect (given Ω) is explicit:

μ̂N.Ω/=
[

N∑
i=1

{V1i −Z′
iR

i.Ω/Zi}
]

N∑
i=1

{U1i −Z′
iR

i.Ω/U2i}: .5/
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Remark 1. The likelihood pi is explicit even if the fixed effect enters the drift non-linearly.
However, only a linear fixed effect μ leads to an explicit expression for its MLE.

2.2.1. Discrete data
Above we assumed that we observe the entire paths .Xi

t/0�t�T . In practice, observations are
available only at discrete time points t0, : : : , tn. A natural approach is to replace the continuous
time integrals in qi.θ/ by discrete time approximations and to derive an approximate MLE based
on the resulting approximate likelihood. For instance, an expression of the form

∫ tk+1
tk

h.s, Xi
s/dXi

s

may be replaced by a first-order approximation h.tk, Xi
k/ΔXi

k. In the linear model (2), the ap-
proximation of the continuous time likelihood corresponds to the exact likelihood of its Euler
scheme approximation. In particular, if we observe all individuals at time points tk =T k=n and
denote by Un

1i, V n
1i, Un

2i, V n
2i and Zn

i the first-order discrete time approximations to the continuous
time statistics U1i, V1i, U2i, V2i and Zi in equations (3), we have the following result.

Theorem 1 (negligibility of discretization error). Assume model (2) and suppose that A,
B′Γ−1B, B′Γ−1C, C′Γ−1C, B′Γ−1 and C′Γ−1 are globally Lipschitz continuous in .t, x/ and
that in addition to A, B, C and Σ also B′Γ−1 and C′Γ−1 are of sublinear growth in x, uniformly
in t. Then, for all p�1 and all i=1, : : : , N, there is a constant C such that

Eθ0.[[V1i −V n
1i]]

p +‖U1i −Un
1i‖p + [[V2i −V n

2i]]
p +‖U2i −Un

2i‖p +‖Zi −Zn
i ‖p/�C

(
T

n

)p=2

:

The discretization error is investigated numerically in Section 3.

2.3. Hypothesis testing
It is commonly of interest to test whether an applied treatment has a significant effect on
the treated subjects, i.e. to test whether an underlying treatment effect β, an l-dimensional
subparameter of the fixed effect μ, 1 � l � p, is significantly different from 0. The asymptotic
normality of the MLE for the SDMEMs lends itself naturally to the application of Wald tests,
which can be used to investigate two-sided null hypotheses such as H0 :β=0 (no treatment effect)
or, more generally, any k-dimensional, 1� k � l, linear null hypothesis H0 : Lβ=η0, where L is
a k × l matrix of rank k, specifying the linear hypotheses of interest, and η0 ∈Rk. The Wald test
statistic is .Lβ̂N − η0/′.LV̂ NL′/−1.Lβ̂N − η0/, where β̂N is the MLE of β and V̂ N = ĉov.β̂N/

denotes the estimated variance–covariance matrix of β̂N . Under the null hypothesis the test
statistic is asymptotically χ2 distributed with k degrees of freedom (Lehmann and Romano,
2006). Alternatively, the likelihood ratio test can be applied. Let p0 and pa denote the likelihoods
under the null and under the alternative; then the test statistic −2 log.p0=pa/ is asymptoticallyχ2

distributed with degrees of freedom equal to the difference in number of parameters. Hypothesis
testing in the present SDMEM framework will be further illustrated in the following two sections.

3. Simulation study on the linear transfer model

The model under investigation provides a proof of concept of our main application of mod-
elling electroencephalography measurements of epileptic patients, which will be done in the next
section, but is also inspired from a study on selenomethionine metabolism in humans (Große
Ruse et al., 2015). This multi-dimensional linear transfer model finds frequent applicability in
pharmacokinetics. Each component of the model’s state vector represents the concentration of
a substance in a certain compartment (e.g. in an organ of the human body), such that the model
describes the flow between several compartments. We consider a flow in the form of a cascade-
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shaped transfer structure, illustrated in Fig. 1. The transfer rates between compartments are
mostly subject specific, which we account for by inclusion of random effects. In this way, the total
variation is split into within- and between-individual components. Additionally, dynamics may
depend on covariates Di. Here, the Di ∈{0, 1} encode the randomly assigned treatment group
of subject i. For simplicity we assume a unit diffusion matrix, such that we consider the model

dXi
t =F.Xi

t , Di,μ,φi/dt +dWi
t =−G.α+φi/Xi

t +Diβdt +dWi
t ,

for 0� t �T and Xi
0 =0, where μ′ = .α′,β′/ is the fixed parameter and

G.α/=

⎛⎜⎜⎜⎝
α1 0 0 0 −α5

−α1 α2 0 0 0
0 −α2 α3 +α6 0 0
0 0 −α3 α4 0
0 0 0 −α4 α5

⎞⎟⎟⎟⎠:

This is a special case of the affine model (2). For a given random effect φi, this is an Ornstein–
Uhlenbeck (OU) process, restricted to have unit diffusion and certain entries in the drift matrix
equal to 0. We shall discuss more details in the next section, when treating the electroencephalog-
raphy data. The (unknown) fixed effect μ has the six-dimensional component α, which is shared
across both groups (placebo and treatment) and an additional five-dimensional component
β, which describes the effect of the covariate (treatment) on a subject’s dynamics. The fixed
effects provide information about the entire population. We let β′ = .1, 2, 3, 1, −2/. The ran-
dom effects φi are independent and identically distributed N .0, Ω/ with unknown Ω, which
we for simplicity and to avoid overparameterization assume is diagonal with entries diag.Ω/=
.0:52, 12, 12, 0:52, 0:32, 0:32/. The random effects quantify how the dynamics of a specific subject
differ from the population. The variance parameters in Ω govern the between-subject variability,
whereas the Wiener processes govern the within-subject variability. If the between variability is
large compared with the within variability, i.e. subjects follow quantitatively different dynam-
ics, it is important to include the random effects for robust statistical estimation; for example,
we gain power to detect a possible treatment effect. With α′ = .α1, : : : ,α6/= .2, 4, 3, 2, 1, 1/, all
eigenvalues of G.α/ have positive real parts, implying that the model has a stationary solu-
tion. The processes Xi for individuals without treatment, Di =0, are (on average) mean revert-
ing to 0, whereas those for individuals in the treatment group have average long-term mean

Fig. 1. Illustration of the five-dimensional linear transfer model used in the simulation example: the state Xj D
.Xj,t/0�t�T gives the concentration (over time) of a substance in compartment j, j D 1,. . . , 5; the αj , j D
1,. . . , 5, are the unknown flow rates between compartments and α6 represents the outflow rate of the system



8 M. Große Ruse, A. Samson and S. Ditlevsen

G.α/−1β= .7:50, 4:25, 5:00, 8:00, 14:00/′; see also Fig. 2. The observation horizon is fixed to
T =15. A trajectory of .X1

t , : : : , XN
t /0�t�T is simulated with the Euler–Maruyama scheme with

simulation step size δ=10−4. Fig. 2 shows four realized trajectories of the five-dimensional pro-
cess Xi. Figs 2(a) and 2(b) show trajectories for Di =0 and the lower two correspond to Di =1.

3.1. Parameter estimation
To mitigate simulation errors, the simulated trajectories are thinned by a factor b (taking only
every bth observation). We explore the expected time discretization bias of the estimators by
repeating estimation for different thinning factors b ∈ {10, 100}, which results in sampling in-
tervals Δt = δb = 0:001, 0:01. To investigate estimation performance as a function of sample
size, we used N = 20 and N = 50. Estimation for the .Δt, N/ combinations considered was re-
peated on M = 500 simulated data sets. Table 1 reports the sample estimates of relative biases
and root-mean-squared errors (RMSEs) of the fixed effects and of the variances of the random
effects. The relative bias of α̂j is computed as .1=M/ΣM

m=1.α̂
.m/
j −αj/=αj and the RMSE as

{.1=M/ΣM
m=1.α̂

.m/
j −αj/2}1=2, j = 1, : : : , 6, with an analogous definition for the other parame-

ters. The first six rows in Table 1 correspond to estimated biases and RMSEs of the shared fixed
effects αj, j =1, : : : , 6. The subsequent five rows show these metrics for the treatment effects βj,
j =1, : : : , 5, and the last six rows correspond to the metrics for the diagonal elements of Ω (i.e.
the variances of the random effects). The estimation is very accurate already at sample sizes as
small as N =20, when the data are sampled at high frequency (here 1=0:001). Increasing the sam-
ple size to N =50 does not add much to the accuracy of the estimation of the fixed effects. But it
does, and not surprisingly, improve the estimation of the variances of the random effects, by up
to 14 percentage points. For a lower sampling frequency of 1=0:01, estimates of the fixed effects
α and β are on average biased by only about 1–2%, which is still very accurate. The variances
of the random effects are estimated with an average bias of 5–9% for N =50 and Δt =0:01. Not
displayed here are simulation results for low frequency observations with Δt =0:1. As predicted
by theorem 1, simulations show that estimation becomes fairly unreliable in this case. The bias
due to the time discretization of the continuous time estimator is pronounced, with values of up
to 25% for the fixed effects and up to almost 50% for the variances of the random effects. The
RMSEs rise by more than 100%, compared with the results that were obtained for a 10-times
higher sampling frequency. If only low frequency data are available, caution is therefore recom-
mended and estimation should only be done on a data set that has been enlarged by imputing
data in between the observation time points.

3.2. Hypothesis testing
A natural step is to test whether the treatment effect β, or a subparameter, is significantly differ-
ent from 0. We estimate the false positive rate of the Wald test (see Section 2.3) for this model and
investigate the test’s power under various non-zero treatment effects. The estimated variance–
covariance matrix V̂ N = ĉov.β̂N/ of β̂N is obtained from M =500 (separately) computed MLEs
β̂

.m/

N , m= 1, : : : , M, where underlying data sets have been simulated under the true hypothesis
(under H0 for estimation of the false positive rate and under H1 for power estimation). Table
1 shows that the estimation was accurate for high and medium frequency observations. Diag-
nostic plots (which are not shown here) reveal that the asymptotic distribution of the MLE is
close to normal already for N = 20 subjects, such that, even for a rather small data set and a
medium sampling frequency, test results are reliable. The choice .N, Δt/= .20, 0:01/ provides a
simulation setting which is sufficiently reliable, but at the same time not trivial and will challenge
the hypothesis test, in particular for small treatment effects. The estimated false positive rate
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Table 1. Linear transfer model†

True value Results for Results for Results for
(N, Δt) = (20, 0.001) (N, Δt) = (50, 0.001) (N, Δt) = (50, 0.01)

Relative bias RMSE Relative bias RMSE Relative bias RMSE

α
2.00 0.003 0.116 0.001 0.079 −0:018 0.086
4.00 0.001 0.232 −0:002 0.149 −0:024 0.172
3.00 0.003 0.253 0.001 0.163 −0:021 0.170
2.00 −0:003 0.126 −0:001 0.083 −0:017 0.088
1.00 0.003 0.074 0.001 0.047 −0:016 0.049
1.00 −0:003 0.146 0.002 0.091 −0:008 0.091

β
1.00 0.000 0.157 −0:002 0.099 −0:020 0.099
2.00 −0:001 0.174 −0:002 0.114 −0:024 0.121
3.00 0.002 0.233 0.002 0.152 −0:010 0.152
1.00 0.010 0.231 −0:001 0.148 0.014 0.146

−2:00 0.006 0.203 0.002 0.124 −0:024 0.131

diag(Ω)
0.25 −0:091 0.093 −0:037 0.062 −0:079 0.062
1.00 −0:046 0.355 −0:035 0.208 −0:095 0.216
1.00 −0:073 0.343 −0:035 0.215 −0:085 0.219
0.25 −0:035 0.097 −0:026 0.061 −0:065 0.060
0.09 −0:045 0.035 −0:009 0.022 −0:047 0.021
0.09 −0:181 0.055 −0:040 0.036 −0:065 0.035

†Shown are the estimated relative bias and RMSE of α̂, β̂ and diag.Ω̂/. The sample sizes are
N =20, 50, and the sampling intervals are Δt =0:001, 0:01. For every combination .N,Δt/, the
estimation was repeated on M =500 generated data sets.

(based on M under H0 generated data sets) is 0:074, revealing a slightly liberal finite sample
test behaviour. The power of detecting a treatment effect (rejecting H0 :β= 0) was computed
for various values of β. For β = .1, 2, 3, 1, − 2/′ (values as above), the estimated power was
1. This comes as no surprise as the long-term mean .7:5, 4:25, 5, 8, 14/′ of the state process
in the treatment group is considerably different from the zero long-term mean of the control
group. The power, estimated as 0.956, was still convincing for a much smaller treatment effect
β= .0:1, 0:2, 0:3, 0:1, − 0:2/′, which gives a long-term mean of .0:75, 0:425, 0:5, 0:8, 1:4/′. This
is especially impressive as the state process’s standard deviation (from its long-term mean 0)
under H0 is about .0:66, 0:49, 0:59, 0:72, 1:21/′. More challenging is the rejection of H0 when
the treatment has a small effect on, for example, only one co-ordinate, β= .0:1, 0, 0, 0, 0/′. In
this case (long-term mean .0:2, 0:1, 0:1, 0:15, 0:3/′), and for N = 20, the chance of rejecting H0
is as small as 16% and it is thus hardly possible to detect a difference between groups. However,
although being only slightly conservative, the asymptotic Wald test can detect a treatment effect
for a rather small data set, even if it causes only a little change of the long-term mean compared
with the standard deviation of the process.

4. Analysis of electroencephalography data

Scalp electroencephalography is a non-invasive method to measure electrical activity in the brain
over time, recorded by electrodes placed on the scalp. Abnormal patterns in the recorded brain
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waves are used as possible indicators for diseases such as epilepsy and can help in determining a
suitable treatment for the patient. The data set was collected during a study that was conducted
by the Children’s Hospital Boston and is described in Shoeb (2009). It consists of continuous
electroencephalography recordings on 23 epilepsy patients. The electrodes were arranged on
the scalp according to the international 10–20 system and the electroencephalography signal
was recorded with a sampling frequency of 256 Hz. This is high frequency compared with the
typical timescales of the system, and thus, for this type of data, the discretization error will
be negligible. During the time of recording, every patient experienced one or more periods of
abnormal activity that have been classified as epileptic seizures by Shoeb (2009).

Part of this data set was also analysed in Østergaard et al. (2017). Their results, which were ob-
tained by using a different modelling approach, indicated increased channel interaction strength
during seizure. However, their findings were based on data from a single subject only. It is there-
fore of interest whether we can infer an increased interaction when combining data from several
subjects within a dynamical mixed effects framework. We focus our analysis on recordings from
four channels in the frontal lobe, FP1 F7, FP1 F3, FP2 F4 and FP2 F8, as done in Østergaard
et al. (2017). Thus, responses are four-dimensional time series for every patient. The first two
channels are on the left hemisphere and the second two are, mirrored, on the right. For every
patient we extracted two 5-s periods of recording, one of them reflecting normal brain activity
and the other reflecting abnormal activity classified as epileptic seizure. Fig. 3 shows data for
the selected periods of two subjects.

The dynamics of the signals during seizure differ clearly from preseizure behaviour and the
objective of this analysis is to understand better, quantitatively and qualitatively, how they differ.
From a neurophysiological viewpoint the interaction structure between brain regions or different
channels is of interest and, in particular, if and how this network structure changes under differ-
ent conditions, e.g. when patients enter an epileptic seizure state. A hint on possible interactions
can be obtained by investigating the correlation structure between channels. Under a sufficiently
short time window, the otherwise non-stationary behaviour of spontaneous brain activity can be
considered stationary. We model the 5-s sections of electroencephalography recordings from the
four selected channels with an OU process, as in the simulation study, now in four dimensions
and with no imposed 0s. This is a process with dynamics dXt =AXtdt +ΣdWt and explicit solu-
tion Xt =exp.At/x0 +∫ t

0 exp{A.t − s/}ΣdWs. In particular, Xt (given x0) is Gaussian with mean
E.Xt/ = exp.At/x0 and covariance matrix V.Xt/ = ∫ t

0 exp.As/ΣΣ′ exp.A′s/ds. Thus, A corre-
sponds to −G of the simulation study. If all eigenvalues of the rate matrix A have negative real
parts, X has a stationary solution and the stationary distribution is a centred Gaussian distri-
bution with covariance matrix V = ∫∞

0 exp.Au/ΣΣ′ exp.A′u/du and auto-correlation function
rX.τ /=V 1=2 exp.A′τ /V −1=2.

4.1. The statistical model
The prevalent intersubject variability for electroencephalography data is one of the greater chal-
lenges for any inference procedure (Shoeb, 2009), and we account for such subject-specific devia-
tions from mean OU dynamics by the inclusion of random effects. We present the subject-specific
SDMEM model for the electroencephalography data first and afterwards give a motivation for
our choice. We denote the preseizure process of subject i by Yi,1 and the seizure process by
Yi,2. During seizure, the signal is amplified considerably (Fig. 3). As structural differences are
easier to analyse when preseizure and seizure data are of comparable magnitude, we rescale the
data to X

i,k
t = diag.1=σi,k

11 , : : : , 1=σi,k
44 /Y

i,k
t , with σi,k

jj being the infinitesimal standard deviation
(the square root of the quadratic variation) of channel j. Normalizing by a diagonal matrix
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does not introduce changes in the inherent channel structure but only affects the scaling. The
specific choice of the scaling renders the quadratic variation of the obtained processes Xi,k to
be a correlation matrix type. Taking the OU dynamics as the base model, we then model the
(normalized) data for subject i by

dX
i,k
t ={A+Φi,1 +Di,k.M +Φi,2/}X

i,k
t dt +ΣdW

i,k
t , .6/

where Wi,k are independent Brownian motions, A, M, Φi,1 and Φi,2 are 4 × 4 matrices and the
entries of Φi,1 and Φi,2 are independent centred Gaussian random variables (the random effects).
Note that the random effect Φi,1 is active during both preseizure and seizure, whereas Φi,2 is
activated only during seizure and can be interpreted as a nested random effect. The covariate
Di,k encodes whether the data belong to the preseizure (Di,1 = 0) or seizure state (Di,2 = 1).
Thus, for a preseizure state, population dynamics are driven by the rate matrix A, whereas M

represents the covariate (or seizure) effect. Rewriting equation (6) as

dX
i,k
t =

{
B.X

i,k
t , Di,k/μ+C.X

i,k
t , Di,k/

(
φi,1

φi,2

)}
dt +ΣdW

i,k
t .7/

(with φi,1 and φi,2 being the vectorized versions of Φi,1 and Φi,2 respectively) reveals that this
model belongs to the class of affine SDMEMs with covariates, model (2), and thus has explicit
likelihood and fixed effects estimators.

An alternative to the random-effects model is to make separate analyses on each subject, and
then to summarize the results, for example by taking averages over parameters from different
subjects, to obtain estimates for the population. This approach has some drawbacks. Firstly,
the data are not fully used and some statistical power is lost; secondly, it can be difficult to
evaluate whether averages over individual parameter estimates are the correct measures for the
population. These will depend on the parameterization, and maybe the average of some non-
linear transformation is more appropriate. Below, we also include this analysis to compare with
the random-effects approach.

4.2. Motivation for the model approach
The processes Wi,1 and Wi,2 represent the noise within the system on a short timescale. Their
independence is supported by the fact that data sections Xi,1 and Xi,2 are temporally (on a
larger timescale) clearly separated. In general, behaviour during seizures is more variable, and,
in particular, shows a stronger amplification.

Fig. 4 shows that the average structure of the infinitesimal correlations between channels (off-
diagonal plots) does not differ considerably between the preseizure (left-hand side) and seizure
states (right-hand side). The estimated infinitesimal standard deviations σ̂i,k

jj of the channels
(diagonal plots) reveal, however, that in most subjects and channels (80%) the standard deviation
increases; in the most extreme case it increases 14 fold, and in 78% of the cases it more than
doubles. Because of the shared infinitesimal correlation structure we model the normalized
preseizure and seizure processes with the same diffusion matrix, denoted above by Σ. This implies
that any further changes apart from the scaling in the dynamics between states are captured by
changes in the drift. The transition from the preseizure to seizure state is modelled in terms of the
drift matrix M +Φi,2. The structural change in the population dynamics is represented by M, and
the change in the subject-specific variation due to seizure is represented by the random effect Φi,2.

4.3. Results
The statistical conclusions are based on the population rate matrices A and M, which are
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estimated by their MLEs as outlined in Section 2.2. The estimates of the population-based
rate matrices are

Â=

⎛⎜⎝
−10:52 −3:59 −0:42 2:47

3:24 −17:72 4:76 1:70
1:98 0:14 −12:60 3:94
0:74 −1:75 −1:52 −12:87

⎞⎟⎠,

M̂ =

⎛⎜⎝
−3:22 2:65 0:80 −0:16

0:83 4:60 −1:51 2:81
−0:82 −0:27 0:74 0:00

3:27 0:59 1:30 −3:36

⎞⎟⎠:

The eigenvalues of Â and Â+ M̂ have negative real parts, such that stationary distributions on
the population level for the preseizure and seizure states indeed exist.

In a first step we assess whether the overall covariate effect M is significant by testing H0 :M =0
versus H0 : M �= 0 with a likelihood ratio test. The likelihood ratio statistic, which under H0 is
asymptotically χ2

32−16 distributed, has a realized value of 13.71, with a p-value of 0.62. We
conclude that the null hypothesis H0 : M = 0 cannot be rejected on a 5% level. However, the
data set consists of observations from only 23 subjects and the number of fixed effects alone (32
parameters) is considerably higher. Therefore, a possible prevalent covariate effect is difficult to
detect. More insight into where changes might be present in the rate matrix between preseizure
and seizure states is provided in Fig. 5. It shows the 95% confidence intervals (CIs) for every
entry of M in blue. Only one element of M has a CI that does not include 0. A way to increase
statistical power is to cut down on the number of unknown parameters. Considering only one
element of M active instead of all 16, the number of unknown fixed effects is reduced from 32
to 17. Each of the black CIs in Fig. 5 is derived from a reduced model in which all except the
one element of M being tested are set to 0. As expected, most CIs are more narrow; however,
only a few elements appear to have an effect. The lower left-hand plot, for example, suggests an
increased influence of channel FP2 F8 on FP1 F7 under seizure.

The analysis was repeated on each subject individually to evaluate the importance of including
random effects. Taking averages over the 23 individual estimates, the following population
estimates of the rate matrices were obtained:

Â=

⎛⎜⎝
−10:69 −4:99 0:25 1:46

4:06 −20:32 5:98 0:51
2:39 −0:65 −13:17 4:14
0:25 −1:47 −1:83 −13:55

⎞⎟⎠;

M̂ =

⎛⎜⎝
−3:41 4:04 0:38 0:75
−0:01 6:85 −3:01 4:53
−1:26 0:23 0:94 0:08

4:49 0:44 1:68 −3:46

⎞⎟⎠:

The rate matrices are similar to the rate matrices that were estimated from the model with
random effects; however, the variances of the estimators are larger because of the less efficient
use of the data. This is illustrated in Fig. 5 which includes the individual estimates in pink from
analyses on each subject, which clearly shows the large between-subjects variability. Moreover,
in the individual analyses outlier estimates appear, which for readability are not included in
Fig. 5. This shows that performing individual analyses on each subject leads to more volatile
estimates. These estimates are then summarized in the red CIs, which are the estimates of
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Table 2. Stationary correlations between channels, for the pre-
seizure state and the seizure state†

Channel 1 Channel 2 Correlation Change (%)

Preseizure Seizure

FP1 F7 FP1 F3 0.42 0.52 23.81
FP1 F7 FP2 F4 0.22 0.26 18.18
FP1 F7 FP2 F8 0.32 0.43 34.37
FP1 F3 FP2 F4 0.60 0.59 −1:67
FP1 F3 FP2 F8 0.23 0.36 56.52
FP2 F4 FP2 F8 0.43 0.47 9.30

†The last column shows the change in correlation for seizure epochs
compared with non-seizure periods.

the means of the subject-specific estimates. This is the usual approach to estimate population
parameters, when random effects are not taken into account. We see how we lose statistical
power with this approach, where CIs are broader, not using the full information of the data.
Note that the individual analyses require more parameters, namely one for each subject for
each rate parameter, whereas the random-effects model requires only one variance parameter
for each rate parameter. Finally, the random-effects model is more readily interpretable in terms
of generalizing to similar patients outside the study.

It is not straightforward to interpret a covariate effect by looking at the matrix M entry by
entry. Insights about structural changes in the underlying dynamics can more easily be gained
by looking at interactions in the system. Interactions can be assessed by the correlations be-
tween components of X

i,k
t . To analyse this, we compare the (population) stationary covariance

matrices of the preseizure and seizure state, which will reveal differences in the long-run corre-
lation structure between channels. The population estimates of the correlation matrices of the
stationary distributions for preseizure and seizure states are shown in Table 2. In line with the
findings in Østergaard et al. (2017), channel correlations increase during seizure, most of them
by at least around 20%.

Other quantities of interest are the auto-correlation functions that are shown in Fig. 6. The
diagonal panels in Fig. 6 show the univariate auto-correlation for every channel, i.e. the cor-
relations between a channel and its time-lagged version, as a function of the time lag. The
auto-correlations show no marked difference between the preseizure and seizure states. This
can also be summarized by the eigenvalues of matrices Â and Â+M̂. The absolute values of the
real parts provide the rates of decay and, thus, their inverses indicate the typical time constants
in the system. For the preseizure state the absolute values of the real parts vary between 11.4
and 17.7, whereas during seizure these vary between 11.6 and 18.0.

To summarize, despite not being statistically significant, there are indications of changes in the
correlation structures during epileptic seizures, where correlations between channels increase.
Nonetheless, the main effect of an epileptic seizure seems to be captured by increased variance
addressed in the rescaling of the data, more than structural changes. However, with only 23
patients finer effects might be difficult to unravel. An analysis of all channels would be of
interest but is only possible with much larger sample sizes because of the many parameters that
a full analysis would imply.



18 M. Große Ruse, A. Samson and S. Ditlevsen

(a
)

(b
)

(c
)

(d
)

F
ig

.
6.

T
he

or
et

ic
al

m
ul

tiv
ar

ia
te

au
to

-c
or

re
la

tio
n

fu
nc

tio
ns

rk X
.τ

/D
V̂

1=
2

k
ex

p.
Â
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5. Discussion

SDMEMs constitute an attractive class of statistical models for biomedical data. We suggested
an approach for parameter inference in this framework, which even comprises more complex
dynamics such as time inhomogeneity and multivariate and non-linear states. The inclusion of
(deterministic) subject-specific covariate information, which causes the modeller to leave the
world of identically distributed observations, is addressed as well. The conditions presented
for consistency and asymptotic normality of the MLE along the lines of L2-differentiability
do not require the typical strong smoothness properties of densities and thereby open doors
to irregular models. To make abstract formulations graspable, conditions are illustrated for
the special case of Gaussian random effects and linear parameters (but possible non-linearity
in the state). This model is a multi-dimensional extension of that studied in Delattre et al.
(2013) and is, in its multi-dimensional version, particularly interesting as it comprises numerous
well-known models. Among them are the predator–prey (or Lotka–Volterra) model (Murray,
2002), the Lorenz equations that were introduced by Lorenz (1963), which have been used to
model, for example, temperature, wind speed and humidity, the Brusselator model (Kondepudi
and Prigogine (2014), section 19.4), the Fitzhugh–Nagumo model (FitzHugh, 1955; Nagumo
et al., 1962; Jensen et al., 2012), which is used to describe the regenerative firing mechanism in an
excitable neuron, and the susceptible–infected–removed model that was introduced by Kermack
and McKendrick (1927): an epidemic model which has been widely studied and applied (Keeling
and Rohani, 2008; Guy et al., 2015).

The estimation quality in terms of sample size and sampling frequency was investigated in
a simulation study for a popular model in pharmacokinetics, which was motivated by a recent
study (Große Ruse et al., 2015). It includes subject-specific covariate information and is linear
in parameters and state. When observations are sampled at high frequency, estimation results
were already convincing for small sample sizes (N =20), despite the comparably large number
(11 fixed effects and six variances) of unknown parameters. A moderate sampling interval (of
Δt =0:01) still gave good results for the sample size considered. However, when sampling at low
frequency (Δt =0:1), the discrete time bias makes itself felt (not included here). The asymptotic
normality of the MLE lends itself naturally to hypothesis tests by means of the Wald or the
likelihood ratio test. On the basis of the simulated data, we estimate the false positive rate,
revealing a slight liberalism of the test procedure, and compute the test’s power for different
true values of parameters.

Finally, we apply the framework to the statistical analysis of epileptic electroencephalography
data to assess differences between dynamics for non-seizure and seizure periods. The population
voltage dynamics during non-seizure and seizure states are modelled as OU processes, whereas
the prevalent intersubject variability was accounted for by the inclusion of random effects in the
drift. After having adjusted for the subject-specific deviations, systematic differences between
preseizure and seizure recordings are assessed by comparing the population correlation structure
of the corresponding stationary distributions. Our findings support those in Østergaard et al.
(2017), which indicate increased state (channel) correlation for seizure epochs compared with
non-seizure states.

A few comments are in order concerning the simulation study and the application presented.
Regarding the electroencephalography data analysis, it should be noted that a physiological
interpretation of our results in terms of an underlying network structure must be taken with
a grain of salt for two key reasons. One is that electroencephalography recordings are only
proxies for underlying brain activity. Secondly, correlation is only one way to assess signal
interaction. Non-linear interactions, which are undetectable by correlation-based measures,
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may still exist. In terms of our simulation settings, we have studied the method’s applicability to
models with up to only 17 parameters. Even in the case of an explicit likelihood, the MLE of the
(unknown) covariance matrix of the random-effects vector is implicit and estimation requires
numerical optimization, which may hamper estimation when the parameter space has a high
dimension.

A drawback of the approach presented is the already mentioned inherent discrete time bias
of the estimation procedure. It is negligible if observations are sampled at sufficiently high
frequency, such as for electroencephalography recordings, but for low frequency observations,
which sometimes occur in pharmacological applications, a severe bias is introduced, which
should be borne in mind in applications. A possible solution is to impute data at time points in
between observation times, and to conduct the estimation on the enlarged data set (Bladt et al.,
2016). Related to that is the problem of incomplete observations, where only some of the co-
ordinates in the state space are observed, and an entire path of a completely unobserved (latent)
co-ordinate should be inferred (Berg and Ditlevsen, 2013; Ditlevsen and Samson, 2014). Missing
observations of one or more co-ordinates is not untypical for biological data. This, at a first
step, prohibits application of the estimation procedure proposed, as it relies on the assumption
of complete-data observations. Such statistical recovery of hidden state co-ordinates remains a
topic for future research.

6. Asymptotic properties of the maximum likelihood estimator

In this section, we investigate asymptotic properties of the MLE and discuss some technical
results.

If the drift is as in equation (2) and observations are identically distributed (in particular,
the model does not contain subject-specific covariate information), consistency and asymptotic
normality of the MLE can be proved by using the ideas in Delattre et al. (2013). The proofs
are a natural extension of their setting to the multi-dimensional, affine, non-homogeneous case
but become more tedious to work out in detail and to write down and will therefore be omitted
here.

The classical proof of asymptotic normality of the MLE imposes strong smoothness
conditions on the subject-specific density functions, such as third-order differentiability and
boundedness of the derivatives. A Taylor series expansion argument together with a required
asymptotic normality of the N-sample score function and a convergence of the average FI (see,
for example, Bradley and Gart (1962), equation (13), or Hoadley (1971), condition N7) then
yield the result. If observations are not identically distributed (e.g. if subject-specific covariate
information is included in equation (1)) and the standard central limit theorem for independent
and identically distribution (IID) variables cannot be applied to the score function, one can
revert to the Lindeberg–Feller central limit theorem, given that the family of individual score
functions {Si.θ/; i∈N} satisfies the Lindeberg condition (a condition which limits the variation
of each Si in relation to the overall N-sample score variation). The convergence of the average FI,
which is naturally given in IID models, often breaks down to requiring that covariate averages
converge (Fahrmeir and Kaufmann, 1985).

The more general local asymptotic normality approach which we pursue here dispenses with
the differentiability conditions by building on L2-derivatives. More importantly, the added level
of abstraction facilitates proofs, avoiding tedious and long calculations. An L2-score function
and L2-FI are defined, which then are required to meet the above-mentioned Lindeberg and
convergence conditions (see assumption (e) below and theorem 3). The first part of this section
adapts results that were developed in Ibragimov and Has’minskii (2013), on consistency and
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asymptotic normality of the MLE for θ= .μ,ϑ/ in models that do not necessarily meet the
differentiability conditions, to the current framework of SDMEMs with covariates. In the second
part, we illustrate the verification of regularity conditions for an SDMEM with covariates and
with dynamics that are frequently encountered in biomedical modelling. Although the L2-based
approach opens up for the inclusion of irregular densities in our framework, it still requires us to
verify the convergence of the average FI. We shall discuss the complications of this convergence
within the SDMEM framework at the end of this section.

We write νi =Qi
μ0,ϕ0

(see the beginning of Section 2). For simplicity, we assume that Θ⊆Rq

is open, bounded and convex and that, in all what follows, K ⊂Θ is compact.
We start by stating general assumptions which the statistical model is required to satisfy and

adapt them more closely to the SDMEM framework, by pointing out sufficient conditions for
this particular framework which may be verified more easily. Afterwards, we establish results
on asymptotic properties of the MLE for SDMEMs.

(a) θ �→pi.θ/ is νi almost surely continuous.
(b) θ �→ √

pi.θ/ is L2.νi/ differentiable with L2.νi/-derivative ψi.θ/ (in other words: pi.θ/
is Hellinger differentiable). (For each θ,

∫ ‖ψi.θ; x/‖2dνi.x/ < ∞ and lim‖h‖→0 ‖h‖−2

×∫ ‖√pi.θ+h; x/−√
pi.θ; x/−ψi.θ; x/h‖2dνi.x/=0.)

(c) ψi.θ/ is continuous in L2.νi/. As a consequence, the matrix Ii.θ/=4
∫
ψi.θ; x/′ψi.θ; x/dνi.x/

exists and is continuous and will be called the FI matrix. The N-sample FI is then
IN.θ/=ΣN

i=1Ii.θ/.
(d) The FI is bounded away from 0 and finite:

0 < inf
θ∈Θ

[[
1
N

IN.θ/

]]
� sup
θ∈Θ

[[
1
N

IN.θ/

]]
<∞:

(e) There is a symmetric, positive definite limiting matrix I.θ/ such that

lim
N→∞

sup
θ∈K

[[
1
N

IN.θ/− I.θ/

]]
=0

and

lim
N→∞

sup
θ∈K

[[{
1
N

IN.θ/

}−1=2

− I.θ/−1=2
]]

=0:

Analogously to the traditional setting, we call Si.θ/=2pi.θ/−1=2ψi.θ/ the score function of sam-
ple i and set SN.θ/=ΣN

i=1Si.θ/ for the N-sample score function. One can show that also in this
more general setting the score function is centred (Ibragimov and Has’minskii (2013), page 115).

Sufficient conditions for the almost sure continuity of pi.θ/ in θ are continuity of μ �→qi.μ,ϕ/

and of ϑ �→ g.ϕ;ϑ/, together with the existence of an integrable function of ϕ dominating
qi.μ,ϕ/g.ϕ;ϑ/. Continuity of g holds for instance in the common case where g is a Gaus-
sian density N .0,ϑ/ and ϑ is bounded away from 0. For conditions on the continuity of qi,
suppose that F is continuous and assume for simplicity that Σ.t, x/ ≡ I is the identity matrix.
If μ �→ F.Xi

s, Di
s,μ,ϕ/ is uniformly continuous (for instance differentiable with bounded Ja-

cobian), then μ �→ ∫ T i

0 F.Xi
s, Di

s,μ,ϕ/′F.Xi
s, Di

s,μ,ϕ/ds is continuous. If F moreover has the
property that, for some κ, C > 0, ‖F.Xi, Di

s,μ,ϕ/ − F.Xi, Di
s,μ0,ϕ/‖ � C.1 + ‖Xi‖κ/‖μ−μ0‖,

Kolmogorov’s continuity criterion guarantees continuity of qi.
The L2-differentiability is neither stronger nor weaker than standard (pointwise) differentia-

bility. Generally, none implies the other but, under certain conditions, the limits are identical.
Of course, if pi is L2 differentiable and differentiable in the ordinary sense, then
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ψi.θ; x/= d
dθ

pi.θ; x/1=2:

To point out the connection between the FI and score functions defined via L2-derivatives
and their counterparts based on ‘standard’ differentiability, we recall the following result (van
der Vaart (2000), lemma 7.6). If θ �→√

pi.θ/ is continuously differentiable, the quantity

S̃
i
.θ/ :=2pi.θ/−1=2 d

dθ
pi.θ/

is well defined (since pi >0). If Ĩ
i
.θ/=Eθ{S̃

i
.θ/S̃

i
.θ/′} is finite and, continuous, θ �→√

pi.θ/ is L2
differentiable, the L2-derivative coincides with the pointwise derivative and, in fact, S̃

i
.θ/=Si.θ/

and Ĩ
i
.θ/= Ii.θ/.

Note as well that the assumption on the (norm of the) FI matrix to grow beyond bounds (see
condition (e)) corresponds to the requirement of infinite flow of information. This is naturally
connected to the consistency of estimators.

In what follows, we write briefly and somewhat sloppily θN if it is of the form θN = θ+
IN.θ/−1=2h for some θ∈K and h∈ΘN,θ ={h∈Rq :θ+ IN.θ/−1=2h∈Θ}.

We can now state results on the asymptotic behaviour of the MLE in SDMEMs with covari-
ates. These are consequences of theorems in Ibragimov and Has’minskii (2013), and proofs are
only briefly outlined.

Theorem 2 (consistency). The MLE of model (1) is uniformly on K consistent, if (condition
1) there is a constant m>q such that supθ∈K Eθ{‖SN.θ/‖m}<∞, and (condition 2) there is a
positive constant a.K/ such that for (sufficiently large N and) all θ∈K (and all h∈ΘN,θ)

H2
i .θ, θN/�a.K/

‖θN −θ‖2

1+‖θN −θ‖2 ,

where H2
i .θ1, θ2/ :=∫ {√

pi.θ1/−√
pi.θ2/}2dνi is the squared Hellinger distance between Qi

θ1
and Qi

θ2
.

Proof. Condition 1 is an extension of lemma III.3.2 in Ibragimov and Has’minskii (2013)
to non-homogeneous observations. Condition 2 is adapted from Ibragimov and Has’minskii
(2013), lemma I.5.3.

Remark 2. If the dimension of the parameter set is 1, condition 1 can be replaced by a sub-
quadratic growth condition on the Hellinger distance (for IID observations, see Ibragimov and
Has’minskii (2013), theorem I.5.3), namely that H2.θ1, θ2/�A‖θ2 −θ1‖2, such that consistency
here reduces to H2.θ1, θ2/ behaving asymptotically as ‖θ2 −θ1‖2.

The following theorem establishes the so-called uniform asymptotic normality of the model,
which in turn implies the asymptotic normality of the MLE (theorems II.6.2 and III.1.1, Ibrag-
imov and Has’minskii (2013)).

Theorem 3 (asymptotic normality). Assume conditions 1 and 2 from theorem 2 and addition-
ally (condition 3) the family {Si.θ/, i=1, : : : , N} satisfies the Lyapunov condition uniformly
in K, i.e. there is δ> 0 such that

lim
N→∞

sup
θ∈K

N∑
i=1

Eθ{‖IN.θ/−1=2Si.θ/
2+δ}=0,

and (condition 4) ∀ R> 0,
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lim
N→∞

sup
θ∈K

sup
‖h‖<R

N∑
i=1

∫
[{ψi.θN/−ψi.θ/}IN.θ/−1=2h]2dνi =0:

Then {θ̂N}N∈N is uniformly in K consistent and asymptotically Gaussian distributed with
parameters .θ, IN.θ/−1/, and all moments of {IN.θ/1=2.θ̂N − θ/}N∈N converge uniformly in
K to the corresponding moments of the N .0, I/ distribution.

Condition (3) can be generalized to the Lindeberg condition. If the densities
√

pi.θ/ are
twice continuously differentiable with second derivative Ji.θ/, assumption 4 can be replaced by
requiring that

lim
N→∞

sup
θ∈K

sup
‖h‖�R

[[IN.θ/−1=2]]4
N∑

i=1

∫
[[Ji.θN/]]2dνi =0:

As pointed out in Section 1, for a general SDMEM the pi are not explicitly available. One can,
however, formulate conditions for the drift function F and the random-effects density g, which
implicitly guarantee the differentiability of log{pi.θ/}= log{∫ qi.μ,ϕ/g.ϕ;ϑ/dϕ}. This can, for
example, be done by assuring that differentiation can be passed under the integral sign: sufficient
conditions for the differentiability of log{pi.θ/} with respect to μ would, for example, include
differentiability of qi with respect to μ and a uniform-in-μ domination of

d
dμ

qi.μ,ϕ/

{∫
qi.μ,ϕ/g.ϕ;ϑ/dϕ

}−1

:

However, explicitly formulating these conditions for a generic SDMEM is not illustrative; suit-
able conditions should be formulated and checked for the specific application at hand. One
particular case in which the pi.θ/ are explicitly available is the affine model (2), which we con-
sider in more detail below.

6.1. Stochastic differential mixed effect model with covariates and affine mixed effects
We illustrate the verification of the assumptions for theorems 2 and 3 for the affine SDMEM
(2). The estimation performance and hypothesis testing for various sample sizes and sampling
frequencies of this model were studied in Section 3, and applied in Section 4 for the statistical
investigation of electroencephalography data. For simplicity we assume that B = C, such that
Ui :=U1i =U2i and Vi =V1i =V2i =Zi. The likelihood (4) can be written as

pi.θ/= 1√
det.I +ViΩ/

exp
{

−1
2

.μ−V −1
i Ui/

′
Gi.Ω/.μ−V −1

i Ui/

}
exp

(
1
2

U ′
iV

−1
i Ui

)
,

with Gi.Ω/ = .I + ViΩ/−1Vi. Defining γi.θ/ = Gi.Ω/.V −1
i Ui −μ/ (we assume that Vi is almost

surely invertible), the score function for subject i is thus given by

Si.θ/=
[

d
dμ

log{pi.θ/},
d

dΩ
log{pi.Ω/′}

]
,

with

d
dμ

log{pi.θ/}=γi.θ/
′

and

d
dΩ

log{pi.θ/}= 1
2{−Gi.Ω/+γi.θ/γi.θ/

′}:
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We start by verifying condition 1. Since the set K ⊂ Θ is compact, there are positive con-
stants AK, BK and CK such that ‖μ‖�AK, BK � [[Ω]]�CK. One can show that [[Gi.Ω/]]� [[Ω−1]],
which gives the upper bound ‖Si.θ/‖� .‖γi.θ/‖+ [[Ω−1]] +‖γi.θ/‖2/. Moreover, the moment-
generating function Φθ,γi.θ/.a/ of γi.θ/ can be bounded from above by exp . 1

2 a′Ω′a/, for a∈Rd .
This can be used to find that Eθ{‖γi.θ/‖m} � C1 for some constant C1 that may depend on
K, d and m. Therefore, there is another constant C2, which may depend on K, d, m and N,
such that Eθ{‖SN.θ/m}�C2, proving condition 1.

To verify condition 2, note that the regularity of pN.θ/=ΠN
i=1pi.θ/ and its derivatives implies

that

H2.θ, θN/=
∫

{−ψN.θ/.θN −θ/+√
pN.θN/−√

pN.θ/+ψN.θ/.θN −θ/}2dν

=
∫

{−ψN.θ/.θN −θ/}2dν+o.‖θN −θ2/

= .θN −θ/′IN.θ/.θN −θ/+o.‖θN −θ‖2/−2O.‖θN −θ‖2/o.‖θN −θ‖2/

�‖.θN −θ/‖2λN,min.θ/+o.‖θN −θ‖2/,

where λN,min.θ/ denotes the smallest eigenvalue of IN.θ/. Therefore, for N sufficiently large,
there is a constant AK such that H2.θ, θN/�AK‖.θN −θ/‖2. Since Θ is bounded, we even have

‖.θN −θ/‖2 �C
‖.θN −θ/‖2

1+‖.θN −θ/‖2

for some positive constant C, which shows that condition 2 holds.
The Lyapunov condition 3 follows in a straightforward way. According to above,

Eθ{‖Si.θ/‖3}�C for some C and therefore

sup
θ∈K

N∑
i=1

Eθ{‖IN.θ/−1=2Si.θ/
3}�N−3=2 sup

θ∈K

[[
√

NIN.θ/−1=2 − I.θ/−1=2]]
N∑

i=1
Eθ{‖Si.θ/‖3}

+N−3=2 sup
θ∈K

[[I.θ/−1=2]]
N∑

i=1
Eθ{‖Si.θ/‖3}

�CN−1=2
{

sup
θ∈K

[[
√

NIN.θ/−1=2 − I.θ/−1=2]]+ sup
θ∈K

[[I.θ/−1=2]]
}

,

which converges to 0 as N →∞.
To verify condition 4, we show that (recall that Ji.θ/ denotes the second derivative of

√
pi.θ/)

sup
‖h‖�R

1
N

[
1
N

N∑
i=1

Eνi

{
[[Ji.θN/−Ji.θ/]]2

}]
,

1
N

[
1
N

N∑
i=1

Eνi

{
[[Ji.θ/]]2

}] .8/

converge to 0 uniformly in K. As Ji.θ/ is continuous, it is uniformly continuous on compact
sets, such that, for all i ∈ N, ai,N = sup‖h‖�R[[Ji.θN/−Ji.θ/]] converges almost surely to 0 as
N →∞. One can show that ai,N �Ai.θ, R/ and Eνi{Ai.θ, R/2}�DK. Dominated convergence
implies that Eθ.ai,N/→ 0, and the uniform (in i) bound DK implies uniform in K convergence
of the first term in expression (8) to 0. For the second term in expression (8) we note that
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Eνi{[[Ji.θ/]]2}�Eθ

{[[
d
dθ

Si.θ/

]]2}
+Eθ{[[Si.θ/′Si.θ/]]2}<CK,

where CK is a constant that depends on K only and we conclude uniform in θ∈K convergence
to 0, completing the verification of condition 4.

6.2. On the convergence of the average Fisher information in stochastic differential
mixed effects models
As seen above, a key condition for establishing the asymptotic normality of the MLEs was the
convergence of the scaled N-sample FI .1=N/IN.θ/ = .1=N/ΣN

i=1Ii.θ/ to a deterministic limit
I.θ/. This is difficult to check when the drift contains subject-specific covariate information Di

and these covariates are not identical across subjects, because the processes Xi do not have the
same distributions, since the drift function F varies across subjects, Fi.x,μ,φi/=F.x, Di,μ,φi/.

In a linear regression model with random effects, the asymptotic behaviour of the averaged
FI is deduced from a comparable asymptotic behaviour of the averaged covariates, such that
the verification of the conditions can conveniently be accomplished on the covariate level. Also,
in SDMEMs with covariates, it would be desirable to be able to break down the convergence
of .1=N/IN.θ/ to an average covariate behaviour. This, however, is not possible, not even if we
assume the simplest case where the drift function F is linear in state, covariates and fixed and
random effects and if the random effects are Gaussian distributed with known covariance matrix.

We illustrate this in the simplest non-trivial example that includes covariates. We look at a one-
dimensional state process Xi governed by dXi

t ={Xi
t.μ

1 +φi,1/+Di
t.μ

2 +φi,2/}dt + dWi
t , with

fixed effects vector μ= .μ1,μ2/′, IID N .0, Ω/-distributed random effects φi = .φi,1,φi,2/′ and
known covariate process Di. We assume that Ω is known, such that θ=μ is the only unknown
parameter. This set-up is a special case of equation (2) with A = 0 and B = C and therefore
Ui :=U1i =U2i and Vi :=V1i =V2i =Zi. More specifically,

Ui =

(∫ T

0
Xi

tdXi
t∫ T

0
Di

tdXi
t

)
and

Vi =

(∫ T i

0
.Xi

t/
2dt

∫ T i

0
Xi

tD
i
tdt∫ T i

0
Xi

tD
i
tdt

∫ T i

0
.Di

t/
2dt

)
:

The FI is by definition

Ii.μ/=Eμ

[
− d2

dμ2 log{pi.θ/}
]

=Eμ{.I +ViΩ/−1Vi};

see equation (4). The matrix .I + ViΩ/Vi is, however, a non-linear function of Vi and thus
finding an explicit expression for Ii.μ/ is generally impossible—even in the simple linear case,
where Xi is nothing but a Gaussian process. For comparison, in the linear mixed effects
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model, the log-likelihood for observation yi with covariate vectors xi and zi is proportional to
− 1

2 .yi − .xi/′μ/′.I + z′
iΩzi/

−1.yi − .xi/′μ/, and therefore the FI is Eμ{xi.I + z′
iΩzi/

−1.xi/′} =
xi.I + z′

iΩzi/
−1.xi/′. The crucial difference, compared with the linear SDMEM case is that the

matrix .I + z′
iΩzi/

−1 is deterministic. Therefore, convergence of .1=N/ΣN
i=1Ii.θ/ is implied by

a limiting behaviour of averages. This is particularly attractive as one can often design the
experiment in such a way that the required limiting behaviour holds. In the SDMEM case,
however, it will generally not be possible to determine from an analytical expression of IN.θ/
whether the condition .1=N/IN.θ/ → I.θ/ holds, because of the combination of non-linearity
and stochasticity.
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