Project "Stochastic modelling of neuronal data"
MSIAM students
Subject 1

Elliptic FitzHugh Nagumo model

Consider the stochastic elliptic FitzHugh-Nagumo model, defined as the solution to the system
\[
\begin{align*}
 dV_t &= \frac{1}{\varepsilon}(V_t - V_t^3 - U_t - s)dt + \sigma_1 dB^1_t, \\
 dU_t &= (\gamma V_t - U_t + \beta) dt + \sigma_2 dB^2_t,
\end{align*}
\]
where the variable \(V_t \) represents the membrane potential of the neuron at time \(t \), and \(U_t \) is a recovery variable, which could represent channel kinetic. Parameter \(s \) is the magnitude of the stimulus current.

Parameters to be estimated are \(\theta = (\gamma, \beta, \varepsilon, \sigma_1, \sigma_2) \), since parameter \(s \) is not identifiable when only observing \(V_t \) [Jensen et al 2012]. Often \(s \) represents injected current and is thus controlled and known in a given experiment.

Project

In your project, you will study the FitzHugh Nagumo (FHN) by answering some of the following questions

1. Simulate some trajectories with an exact scheme or an approximate scheme.

2. Propose an estimation method of parameters \(\gamma, \beta, \varepsilon, \sigma_1, \sigma_2 \) when both coordinates \(V, U \) are observed at discrete times. The estimation method could be
 - Minimization of the contrast defined by the Euler discretization: Kessler 1997
 - Bayesian approach based on Monte Carlo Markov Chain method: Jensen et al 2012

 You will first explain the method, give the intuition, resume the principal theoretical results, and try to implement the method on simulated data.

3. Propose a method to filter the unobserved component \(U \) when only \(V \) is observed at discrete times and when parameters are known or not. Filtering can be based on
 - Kalman filter: Paninski et al 2010
 - Linearization and MCMC: Pokern et al 2011

 You will first explain the method, give the intuition, resume the principal theoretical results if there exist, and try to implement the method on simulated data.
4. Propose an estimation method of parameters D, γ, σ when only V is observed at discrete times. The estimation method could be

- Bayesian approach based on Monte Carlo Markov Chain method: Pokern et al 2011

You will first explain the method, give the intuition, resume the principal theoretical results if there exist, and try to implement the method on simulated data.