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Chapter 1

Introduction to neuronal systems

Our perception of the world is constructed out of the raw data sent to
our brains by our sensory nerves. In each situation, these data come in
the same standard form: as sequences of identical voltage pulses called
action potentials or spikes. All the myriad tasks our brains perform in
the processing of incoming sensory signals begin with these sequences of
spikes. Spike sequences are the language of brain: when it comes time
to act on the results of the stimulation, the brain sends out sequences of
spikes to the motor neurons. The purpose of neurosciences is to provide
a dictionary of that language of the brain, to understand the structure
of this dictionary.

The neurons are the elementary processing units in the central ner-
vous system, interconnected with intricate patterns. Neurons and there
connections (long wire-like extensions) are packed into a dense network.
Their estimated number in the human brain is around 1012, and several
kilometers of ‘wires’ per cubic millimeter. We focus on neurons, also var-
ious other cells are present in the cortex (like glia cells), and especially
on spiking neurons (neurons which emit an output signal).

1.1 Main properties of a neuron

1.1.1 A spiking neuron

A typical neuron can be divided into three functionally distinct parts
(see Figure 1.1), called dendrites, soma and axon:
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Figure 1.1: From Gerstner et al. (2014) (a) Single neuron with Dendrites, soma and axon. The inset
shows an example of a neuronal action potential. (b) Signal transmission from a presynaptic neuron
j to a postsynaptic neuron i.

• The dendrites play the role of the input device, that collects signals
from other neurons and transmits them to the soma.

• The soma is the central processing unit, that performs an impor-
tant non-linear processing step. If the total input exceeds a certain
threshold, then an output signal is generated

• The axon, the output device, takes over the output signal and de-
livers it to other neurons.

The junction between two neurons is called a synapse. A neuron
sends a signal across a synapse. The sending neuron is called the presy-
naptic cell and the receiving neuron is called the postsynaptic cell.

A single neuron in vertebrate cortex often connects to more than 104

postsynaptic neurons. Most of its axial branches end in the direct neigh-
borhood of the neuron, but the axon can also stretch over several cen-
timeters so as to reach to neurons in other areas of the brain.

1.1.2 Spike trains

Neurons are just as other cells enclosed by a membrane which separates
the interior of the cell from the extracellular space. Inside the cell the
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concentration of ions is different from that in the surrounding liquid. The
difference in concentration is called the membrane potential. A huge
membrane potential generates an electrical potential, a short electrical
pulse, which plays an important role in neuronal dynamics. The pulses,
so-called action potentials or spikes, have an amplitude of about 100
mV and typically a duration of 1-2 ms. The form of the pulse does not
change as the action potential propagates along the axon.

A chain of action potentials emitted by a single neuron is called a
spike train, a sequence of stereotyped events which occur at regular or
irregular intervals. The action potential is the elementary unit of signal
transmission.

Action potentials in a spike train are usually well separated. Even
with very strong input, it is impossible to excite a second spike during
or immediately after a first one. The minimal distance between two
spikes defines the absolute refractory period. The absolute refractory
period is followed by a phase of relative refractoriness where it is difficult,
but not impossible to excite an action potential.

1.1.3 Synapse

The most common type of synapse in the vertebrate brain is a chemical
synapse. At a chemical synapse, the axon terminal comes very close
to the postsynaptic neuron, leaving only a tiny gap between pre- and
postsynaptic cell membrane.

When an action potential arrives at a synapse, it triggers a complex
chain of bio-chemical processing steps that lead to a release of neuro-
transmitter from the presynaptic terminal into the synapse. As soon
as transmitter molecules have reached the postsynaptic side, they are
detected by specialized receptors in the postsynaptic cell membrane and
open specific ion channels so that ions from the extracellular fluid flow
into the cell. The ion influx leads to a change of the membrane potential
at the postsynaptic site so that the chemical signal is translated into an
electrical response.
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Figure 1.2: The solid line indicates the cell membrane, ions can pass though the gap. A difference in
ion concentration generates an electrical potential. The concentration n2 inside the neuron is different
from the concentration n1 of the surround. The resulting potential is the Nernst potential.

1.1.4 Equilibrium potential

The cell membrane is a nearly perfect electrical insulator. However,
embedded in the membrane are specific proteins which act as ion gates.
There are two types of ion gates: ion pumps and ion channels. Ions
can pass through the ion channels. Ion pumps actively transport ions
from one side to the other.

The concentration n2 inside the neuron (in the intra-cellular liquid)
is different from the concentration n1 of the surround. The resulting
potential is called the Nernst potential (see Figure 1.2).

For example, the sodium concentration inside the cell (≡ 60 mM/l) is
lower than that in the extracellular liquid (≡ 440 mM/l). At equilibrium,
this difference in concentration causes an Nernst potential VNa ≡ +50
mV. That is, the interior of the cell has a positive potential with respect
to the surround. If the voltage difference (membrane potential) is smaller
that the equilibrium potential, more Na+ ions flow into the cell (through
ion channels) so as to decrease the concentration difference. Thus the
direction of the current is reversed when the voltage passes VNa. For this
reason, VNa is called the reversal potential.

The potassium concentration inside is higher (≡ 400 mM/l) that in the
surround (≡ 20 mM/l). The reversal potential for K+ ions is negative
(Vk ≡ −77 mV).

Both sodium and potassium ions are present and contribute to the
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voltage across the membrane. It is found experimentally that the resting
potential of the membrane is about ≡ −65 mV. Since VK < −65 < VNa,
potassium ions will flow out of the cell while sodium ions flow into the
cell. The active ion pumps balance this flow and transport just as many
ions back as pass through the channels.

1.1.5 Dynamics of a neuron

A difference in the voltage (the membrane potential) generates a differ-
ence in ion density. Similarly, a difference in ion concentration generates
an electrical potential.

Without any spike input, the neuron is at rest corresponding to a
constant membrane potential (the difference in concentration between
the interior and the exterior of the cell). After the arrival of a spike, the
potential changes and finally decays back to the resting potential. If the
change is positive, the synapse is said to be excitatory. If the change
is negative, the synapse is inhibitory.

At rest, the cell membrane has already a strong negative polariza-
tion of about -65mV (the resting potential). An input at an excitatory
synapse reduces the negative polarization of the membrane and is called
depolarizing. An input that increases the negative polarization of the
membrane is called hyperpolarizing.

1.2 Experimental data

Our understanding of how the sensory world is represented in the elec-
trical activity of the sensory nerves is limited, first and foremost, by
our ability to record this activity. Indeed, the history of experiments on
the electrical activity of nerves is intertwined with the history of elec-
trical measurements more generally. What can be measured depends on
whether we want to observe a single neuron or several neurons.
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Figure 1.3: Intra-cellular neuronal data: membrane potential function of time

1.2.1 Single neuron observation

An electrode can be placed in the soma of a single neuron. Then the
voltage at this electrode is measured relative to that at a reference elec-
trode placed in the body fluids. What is measured at discrete times is
the membrane potential, that is the difference in voltage between the
interior and the exterior of the cell. We call these measurements intra-
cellular recordings. An example of intra-cellular recordings is plotted
in Figure 1.3.

Although the trace is noisy, there are clear, stereotyped event, which
are the action potentials or spikes produced by this neuron and seen
from outside the cell. The activity observed below the threshold that
produces a spike is called the sub-threshold activity.

1.2.2 Several neurons observation

Several neurons can be observed by extra-cellular recordings, with 16
electrodes placed in the neuronal network. They measure simultaneously
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the activity of several neurons. Only spike trains can be measured (after
filtering), the sub-threshold activity can not be measured.

To exploit extra-cellular recordings, we must first

• Find out how many neurons are recorded

• For each neuron estimate some features like the spike waveform, the
discharge statistics, etc

• For each detected event find the probability with which each neuron
could have generated it.

• Find an automatic method to answer these questions.

This is what we call the spike sorting.
Efficient spike sorting requires:

1. Events detection followed by events space dimension reduction.

2. A clustering stage. This can be partially or fully automatized de-
pending on the data.

3. Events classification.

Then the main issue is to analyze spike trains.

1.3 Fundamental issues

1. characterizing the sub-threshold activity and understand how is pro-
duced an action potential

2. describing the evolution of a neuron’s firing rate across time,

3. assessing time-varying correlation between 2 neurons.

In this lecture, we focus on the first issue.
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Chapter 2

Modelling intra-cellular recordings
with deterministic models

From a biophysical point of view, action potentials are the result of cur-
rents that pass through ion channels in the cell membrane. In an exten-
sive series of experiments, Hodgkin and Huxley succeeded to measure
these currents and to describe their dynamics in terms of differential
equations. The HH equations are the starting point for detailed neu-
ron models which account for numerous ion channels, different types of
synapse.

2.1 Conductance based models

2.1.1 Hodgkin-Huxley model

Hodgkin and Huxley (1952a, 1952b, 1952c) analyzed the electrical dy-
namics of the cell membrane in the giant axon of squid, and showed that
these dynamics could be described with relatively simple phenomenolog-
ical models of conductances that depend on voltage and are selective for
different ions. When these local, active elements are assembled into a
long cable, such as the axon, the nonlinear dynamics of the conductances
select a stereotyped pulse which can propagate at constant velocity, while
all other voltage changes eventually decay.

More precisely, Specific voltage-dependent ion channels, one for sodium,
and another one for potassium, control the flow of those ions through
the cell membrane. The leak current takes care of other channel types
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Figure 2.1: Schematic diagram for the Hodgkin-Huxley model

which are not described explicitly.
The membrane separates the interior of the cell from the extracelullar

liquid and acts as a capacitor (see Figure 2.1). The conservation of
electric charge on a piece of membrane implies that the applied current
I(t) may be split in a capacitive current IC which charges the capacitor
C and further components Ik which pass the ion channels.

Thus
I(t) = IC(t) +

∑
k

Ik(t)

where the sum runs over all ion channels. There are only three different
types of ion currents involved in HH model: a sodium channel Na, a
potassium channel K and an unspecific leakage channel with resistance
R (that consists mainly of Cl− ions). From the definition of a capacity,
C = Q(t)/V (t) where Q(t) is a charge and V (t) the voltage across the
capacitor. Thus

IC = CdV (t)/dt.
Hence

C
dV (t)
dt

= −
∑
k

Ik(t) + I(t)

The leakage channel is described by a voltage-independent conduc-
tance gL = 1

R .
The conductance of the other ion channels is voltage and time de-

pendent. If all channels are open, they transmit currents with a maxi-
mal conductance gNa or gK , respectively. But some of the channels are
blocked. The probability that a channel is open is described by addi-
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tional functions m, n, and h. The combined action of m and h controls
the Na+ channels. The K+ gates are controlled by n. Specifically, we
have∑
k

Ik(t) = gNam
3(t)h(t)(V (t)−VNa)+gKn4(t)(V (t)−VK)+gL(V (t)−VL)

The parameters VNa, VK , VL are the resting/reversal potentials. The
three functions m, n, and h are called the gating variables. They evolve
according to the differential equations

dm(t)
dt

= αm(V (t)) (1−m(t))− βm(V (t))m(t)
dn(t)
dt

= αn(V (t)) (1− n(t))− βn(V (t))n(t)
dh(t)
dt

= αh(V (t)) (1− h(t))− βh(V (t))h(t)

The functions α(v) and β(v) are non-linear functions that have been
adjusted by HH for the giant axon of the squid.

One can rewrite the three equations in the form, for x = m,n or h:
dx(t)
dt

= − 1
τx(V (t))(x(t)− x0(V (t)))

where τx(v) is the time constant, and x0(v) is the value reached by
the process x for a fixed value v: x0(v) = αx(v)/(αx(v) + βx(v)) and
τx(v) = 1/(αx(v) + βx(v)).

Final model

C
dV (t)
dt

= −
(
gNam

3(t)h(t)(V (t)− VNa) + gKn
4(t)(V (t)− VK) + gL(V (t)− VL) + I(t)

)
dm(t)
dt

= − 1
τm(V (t))(m(t)−m0(V (t)))

dn(t)
dt

= − 1
τn(V (t))(n(t)− n0(V (t)))

dh(t)
dt

= − 1
τh(V (t))(h(t)− h0(V (t)))
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Dynamics of HH model

• If some external input (for example short current pulse of 1ms du-
ration) causes the membrane voltage to rise, the conductance of
sodium channels (m(t)) increases. Positive sodium ions flow into
the cell and raise the membrane potential further. If this positive
feedback is large enough, a spike is generated. High values of V (t)
decreases the sodium conductance because of h(t). But the time
constant τh is always larger than τm. The the variable h closing the
channels reacts more slowly to the voltage increase than the variable
m which opens the channel.

• A constant input I(t) = I0 with I0 larger than a critical value, in-
duces regular spiking. Then, usually, the quantity of interest is the
firing rate ν = 1/T where T is the inter-spike interval (ISI).

• There is no unique current threshold for spike generation. This can
be seen with a Heavyside step current. (see page 48 of Gerstner’s
book).

• A time-dependent input may generate spikes that occur at irregular
intervals.

2.1.2 Morris-Lecar model

The behavior of high dimensional nonlinear differential equations is dif-
ficult to analyze. Reduction of the four-dimensional Hodgkin-Huxley
model is therefore useful.

The idea is the following.

1. The dynamics of the gating function m is much faster than that of
the functions n, h, and V . We assume that m is an instantaneous
function and approximatem with a steady-state functionm∞(V (t)).

2. The time constants τh(V ) and τn(V ) are roughly the same, whatever
the value of V , and n0(V ) is closed to 1 − h0(V ). We approximate
the two functions n and h by a single function u. Set U = b−h = an

for some constants b and a.
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Then, the model becomes

C
dV (t)
dt

= −
gNa(m∞(t))3 (b− U(t)) (V (t)− VNa) + gK

U(t)
a

4

(V (t)− VK) + gL(V (t)− VL) + I(t)


dU(t)
dt

= − 1
τu(V (t))(U(t)− u0(V (t)))

Morris and Lecar (1981) proposed to simplify the previous model with
fast and slow conductances:

C
dV (t)
dt

= − (gfastm∞(t) (V (t)− Vfast) + gslowU(t)(V (t)− Vslow) + gL(V (t)− VL) + I(t))
dU(t)
dt

= − 1
τu(V (t))(U(t)− u0(V (t))) = (α(V (t))(1− U(t))− β(V (t))U(t))

with

m∞(v) = 1
2

(
1 + tanh(v − V1

V2
)
)

u0(v) = 1
2

(
1 + tanh(v − V3

V4
)
)

τu(v) = τu

cosh
(
v−V3
V4

)

α(v) = 1
2φ cosh

(
v − V3

2V4

) (
1 + tanh

(
v − V3

V4

))
,

β(v) = 1
2φ cosh

(
v − V3

2V4

) (
1− tanh

(
v − V3

V4

))

2.1.3 FitzHugh-Nagumo model

FitzHugh and Nagumo propose an oscillation model defined by

C
dV (t)
dt

= 1
ε

(
V (t)− V 3(t)− U(t)− I

)
dU(t)
dt

= γV (t)− U(t) + β
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2.2 Leaky-Integrate and Fire model

Detailed conductance-based neuron models reproduce electrophysiolog-
ical behavior with a high accuracy, but are difficult to analyze, esti-
mate from data. Simple phenomenological spiking neuron models are
thus popular. These models are threshold models: Spikes are generated
whenever the membrane potential V crosses some threshold S from be-
low. Spikes being stereotyped events, they are fully characterized by
their firing time. The best-know example of firing model is the leaky
integrate-and-fire model.

The basic circuit of an integrate-and-fire model consists of a capacitor
C in parallel with a resistor R driven by a current I(t). The driving
current I(t) is the sum of two currents: the resistive current IR which
passes through the linear resistor R: IR(t) = V (t)/R (Ohm’s law) and
the capacitive current which charges the capacitor C = q/V (t) where q
is the charge: CdV (t)/dt. Thus

I(t) = V (t)
R

+ C
dV (t)
dt

Introducing the time constant τ = RC of the ‘leaky integrator’ (time
constant of the neuron), we obtain the leaky integrate-and-fire (LIF)
model

dV (t)
dt

= −V (t)
τ

+ C I(t), V (0) = V0

In LIF models, the form of a spike is not described explicitly and
is considered deterministic. The membrane voltage increases until it
reaches a constant threshold S. Spikes are characterized by a firing time
ts, defined by a threshold criterion

ts = inf
t≥0
{V (t) = S}

Immediately after ts, a spike occurs and the potential is reset to its initial
resting value V (ts) = V0, to start again to evolve. The combination of
leaky integration and rest defined the basic LIF model.
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Chapter 3

Modelling intra-cellular recordings
with stochastic models

3.1 Stochastic Processes

The previous neuronal models are deterministic. However, it has been
proved experimentally that similar input and similar experimental con-
ditions lead to different sequences of spikes generation. It is now popular
to deal with stochastic version of neuronal models to mimic the random-
ness observed in experiments.

We recall that a stochastic process {Y (t) : t ≥ 0} is a collection of
random variables on a common probability space (Ω,A, P ) indexed by
a parameter t ∈ T , which we usually interpret as time.

3.1.1 Definitions

We first give some definitions.
Definition 1. A stochastic process {Y (t) : t ≥ 0} is

• stationary, if for all t1 < t2 < . . . < tn, and h > 0, the random n-
vectors (Y (t1), Y (t2), . . . , Y (tn)) and (Y (t1+h), Y (t2+h), . . . , Y (tn+
h)) are identically distributed

• Gaussian if for all t1 < t2 < . . . < tn, the n-vector (Yt1, Yt2, . . . , Ytn)
is multivariate normally distributed

• Markovian if for all t1 < t2 < . . . < tn, P(Y (tn) ≤ y|Y (t1), Y (t2), . . . , Y (tn−1)) =
P(Y (tn) ≤ y|Y (tn−1))
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A process {Y (t) : t ≥ 0} is said to have independent increments if for
all t1 < t2 < . . . < tn, the n random variables Y (t1)− Y (t0), . . . , Y (tn)−
Y (tn−1) are independent. This condition implies that {Y (t) : t ≥ 0} is
Markovian, but not conversely.
The increments are said to be stationary if for any t > s, and h > 0
the distribution of Y (t + h) − Y (s + h) is the same as the distribution
of Y (t)− Y (s).

Definition 2. A stochastic process {B(t) : t ≥ 0} is a Brownian mo-
tion if

1. B(0) = 0

2. it has independent increments, i.e. B(t1), B(t2)−B(t1), . . . , B(tk)−
B(tk−1) are independent random variables for all 0 ≤ t1 < t2 < . . . <

tk.

3. B(t+ s)−B(s) ∼ N (0, t) for each t > 0.

It follows that {B(t) : t ≥ 0} is Gaussian, with mean zero E(B(t)) = 0
and variance proportional to the elapsed time V ar(B(t)) = t. We can
also prove that Cov(B(s), B(t)) = min(s, t). Indeed if s < t, then

Cov(B(s), B(t)) = E(B(t)B(s))
= E((B(t)−B(s))B(s)) + E(B(s)B(s))
= E(B(s)B(s)) = s

because increments (B(t)−B(s)) and B(s)−B(0) are independent.
Almost all sample paths of Brownian motion are everywhere continu-

ous but nowhere differentiable. The Brownian motion is everywhere of
unbounded variations

V b
a (B) = sup

n∑
k=1
|B(tk)−B(tk−1)| =∞

where the supremum is taken over all finite partitions a ≤ t0 < · · · <
tn ≤ b of [a, b].
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3.1.2 Stochastic differential equations

An ordinary differential equation is defined by
dX(t)
dt

= b(t,X(t)) or dX(t) = b(t,X(t))dt, X(0) = x0

The integral form of the equation is

X(t) = X(0) +
∫ t

0
b(s,X(s))ds

Some regularity assumption is usually made on b, such as Lipschitz con-
tinuity, to ensure the existence of a unique solution X(t) for each initial
condition x0.

A stochastic differential equation is written in the form

dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t) (3.1)

where (B(t)) is a Brownian motion, b(t, x) is the drift function and σ(t, x)
is the diffusion coefficient. The integral form is then

X(t) = X(0) +
∫ t

0
b(s,X(s))ds+

∫ t
0
σ(s,X(s))dB(s)

The second integral is not an ordinary Riemann or Lebesgue integral,
because the sample paths of a Brownian process are not of bounded
variation on any bounded time interval. We need to define a stochastic
integral in the sense of Itô. For any function f , we want to define the
following integral

I(f) =
∫ T

0
f(s)dB(s)

Let us consider a piecewise function f , such that f(t) = fj on tj ≤
t < tj+1 for j = 1, 2, . . . , n, with 0 = t1 < t2 . . . < tn = T . Then we want
to define, with probability 1, that

I(f) =
n∑
j=1

fj(B(tj+1)−B(tj))

This is a random variable with zero mean since it is the sum of random
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variables with zero mean. We can compute the second moment:

E(I(f)2) =
n∑
j=1

E
(
f 2
j E

(
|B(tj+1)−B(tj)|2

))

=
n∑
j=1

E(f 2
j )(tj+1 − tj)

For a general function f , we shall define I(f) as the limit of integrals
I(f (n)) of step functions f (n) converging to f . More precisely, define a
partition of the interval [0, T ] by t0 = t1 < t2 < · · · < tn+1 = T where
|δn| = max{|tj+1 − tj| : j = 1, . . . , n} is the norm of the partition, and
approximate

f(t) ≈ f(t∗j) for tj ≤ t < tj+1

where the point t∗j belongs to the interval [tj, tj+1]. Then we define

I(f) =
∫ T
t0
f(s) dBs = lim

|δn|→0

n∑
j=1

f(t∗j) (B(tj+1)−B(tj)) ,

where the limit is considered with the mean-square convergence. When
f(t) is stochastic it turns out that - unlike ordinary integrals - it makes
a difference how t∗j is chosen! Two useful and common choices are the
following:

• The Itô integral: t∗j = tj, the left end point.

• The Stratonovich integral: t∗j = (tj + tj+1)/2, the mid point.

We call I(f) the Itô stochastic integral of f , resulting in a random
variable

X(t) =
∫ t
t0
f(s)dB(s)

which is mean-square integrable with zero mean E(X(t)) = 0 and

E(X(t)2) =
∫ t
t0
E(f 2(s))ds.

X(t) inherits the linearity property from the sums.
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Stratonovich SDE

In some applications (especially to study the so-called hypoelliptic mod-
els, see below), it is more appropriate to formulate SDE in terms of
Stratonovich rather than Ito stochastic integrals. We call such an equa-
tion a Stratonovich SDE writing it in differential form as

dX(t) = b(t,X(t))dt+ σ(t,X(t)) ◦ dB(t).

The ◦ notation denotes the use of Stratonovich calculus. As already
defined, the Stratonovich integral∫ t

0
f(s,X(s)) ◦ dB(s)

is defined as the mean-square limit of the sums

Sn =
n∑
j=1

f(tj,
1
2(X(tj) +X(tj+1)))(B(tj+1)−B(tj))

for partitions 0 = t1 < t2 . . . < tn+1 = t and δn = max |tj+1 − tj| → ∞.
It turns out that the solutions of the Stratonovich SDE also satisfy

an Itô SDE with the same diffusion coefficient σ but with the modified
drift coefficient

b(t, x) = b(t, x)− 1
2σ(t, x)∂σ

∂x
(t, x)

Existence and uniqueness

To ensure the existence of a solution to Eq. 4.1 for 0 ≤ t ≤ T where T
is fixed, the following is sufficient:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

for some constant C Kloeden and Platen (1992); Oksendal (2007). This
ensures that {X(t)}t≥0 does not explode, i.e that {|X(t)|}t≥0 does not
tend to∞ in finite time. To ensure uniqueness of a solution the Lipschitz
condition is sufficient:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|
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for some constant D. Note that only sufficient conditions are stated,
and in many biological applications these are too strict, and weaker con-
ditions can be found. We will not treat these here, though. In (Chapter
Jacobsen) conditions on the functions b and σ to ensure that the process
stays away from the boundaries without assuming the Lipschitz condi-
tion are discussed in detail. Note also that the above conditions are
fulfilled for three of the processes described above.

Itôs formula

Stochastic differentials do not obey the ordinary chain rule as we know
it from classical calculus Oksendal (2007). An additional term appears
because (dB(t))2 behaves like dt. We have

Proposition 1. Itô’s formula. Let {X(t)}t≥0 be an Itô process given
by

dX(t) = b(t,X(t))dt+ σ(t,X(t)) dB(t)

and let f(t, x) be a twice continuously differentiable function in x and
once continuously differentiable function in t. Then

dY (t) = f(t,X(t))

is also an Itô process, and

dY (t) = ∂f

∂t
(t,X(t))dt+ ∂f

∂x
(t,X(t))dX(t) + 1

2σ
2(t,X(t))∂

2f

∂x2 (t,X(t))dt.(3.2)

Note that the first two terms on the right hand side correspond to the
chain rule we know from classical calculus, but an extra term appears in
stochastic calculus because the Wiener process is of unbounded variation,
and thus the quadratic variation comes into play.

Example 1. Let us calculate the integral∫ t
0
B(s)dB(s).

From classical calculus we expect a term like 1
2B(t)2 in the solution.

Thus, we choose f(t, x) = 1
2x

2 and X(t) = B(t) and apply Itôs formula
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to

Y (t) = f(t, B(t)) = 1
2B(t)2.

We obtain

dY (t) = ∂f

∂t
(t, B(t))dt+ ∂f

∂x
(t, B(t))dB(t) + 1

2σ
2(t, B(t))∂

2f

∂x2 (t, B(t))dt = 0 +B(t)dB(t) + 1
2dt

because σ2(t, B(t)) = 1. Hence

Y (t) = 1
2B(t)2 =

∫ t
0
B(s)dB(s) + 1

2
∫ t

0
ds =

∫ t
0
B(s)dB(s) + 1

2t

and finally ∫ t
0
B(s)dB(s) = 1

2B(t)2 − 1
2t.

Example 2. Let us find the solution {X(t)}t≥0 to the Geometric Brow-
nian motion

dX(t) = µX(t) dt+ σX(t) dB(t).

Rewrite the equation as
dX(t)
X(t) = µ dt+ σ dB(t).

Thus, we have ∫ t
0

dX(s)
X(s) = µ t+ σ B(t) (3.3)

which suggests to apply Itôs formula on f(t, x) = log x. We obtain

dY (t) = d(logX(t)) = ∂f

∂t
(t,X(t))dt+ ∂f

∂x
(t,X(t))dX(t) + 1

2σ
2(t,X(t))∂

2f

∂x2 (t,X(t))dt

= 0 + 1
X(t)dX(t) + 1

2σ
2X(t)2

− 1
X(t)2

 dt = dX(t)
X(t) −

1
2σ

2dt

and thus
dX(t)
X(t) = d(logX(t)) + 1

2σ
2dt. (3.4)
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Integrating Eq. 3.4 and using Eq. 3.3 we finally obtain

log X(t)
X0

=
∫ t

0

dX(s)
X(s) −

1
2σ

2t = µ t+ σ B(t)− 1
2σ

2t

and so

X(t) = X0 exp
{(
µ− 1

2σ
2
)
t+ σ B(t)

}
.

Note that it is simply the exponential of a Wiener process with drift.

Quadratic variation

It can be seen that the quadratic variation of a diffusion process solution
to (4.1) is given by

< X,X >t=
∫ t
0
σ2(u,X(u))du

Infinitesimal generator of a diffusion process

Given a diffusion process X solution to (4.1) , a differential operator L
of the form

(Lf)(x) = σ2(x)
2 f

′′(x) + b(x)f ′(x)

with f two times differentiable is called the infinitesimal generator of
the diffusion process X.

Transition density

From the Markovian property of the diffusion, it is also possible to de-
fine the transition density from value x at time s to value y at time t
by p(t, y|s, x). The transition density satisfies the Kolmogorov forward
equation

∂

∂t
p(t, y|s, x) = − ∂

∂y
(b(y)p(t, y|s, x)) + 1

2
∂2

∂y2 (σ2(y)p(t, y|s, x))

and the Kolmogorov backward equation

− ∂

∂s
p(t, y|s, x) = b(x) ∂

∂x
(p(t, y|s, x)) + 1

2σ
2(x) ∂

2

∂x2 (p(t, y|s, x)).
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Letting t→ −∞ in the Kolmogorov forward equation, one obtain
d2

dx2 (σ2(x)π(x)) = 2 d
dx

(b(x)π(x))

where π(x) is the stationary density.

Discrete time approximation

The solution of an Itô process is rarely explicit. When no explicit solution
is available we can approximate different characteristics of the process
by simulation, such as sample paths, moments, qualitative behavior etc.
Usually such simulation methods are based on discrete approximations of
the continuous solution to a stochastic differential equation Iacus (2008);
Kloeden and Platen (1992). Different schemes are available depending
on how good we want the approximation to be, which comes at a price
of computer time. Assume we want to approximate a solution to Eq.
(4.1) in the time interval [0, T ]. Consider the time discretization

0 = t0 < t1 < · · · < tj < · · · < tN = T

and denote the time steps by ∆j = tj+1 − tj and the increments of the
Wiener process by ∆Bj = B(tj+1)−B(tj). Then ∆Bj ∼ N(0,∆j), which
we can use to construct approximations by drawing normally distributed
numbers from a random number generator. For simplicity assume that
the process is time-homogenous.

The simplest scheme is the stochastic analogue of the deterministic
Euler scheme, and is called the Euler-Maruyama scheme. Approxi-
mate the process (X(t)) at the discrete time-points tj, 1 ≤ j ≤ N by the
recursion

Y (tj+1) = Y (tj) + µ(Y (tj))∆j + σ(Y (tj))∆Bj ; Y (t0) = x0 (3.5)

where ∆Bj =
√

∆j · Zj, with Zj being standard normal variables with
mean 0 and variance 1 for all j. This procedure approximates the drift
and diffusion functions by constants between time steps, so obviously
the approximation improves for smaller time steps. To evaluate the
convergence things are more complicated for stochastic processes, and
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we operate with two criteria of optimality: the strong and the weak orders
of convergence Bally and Talay (1996, 1995); Iacus (2008); Kloeden and
Platen (1992).

Consider the expectation of the absolute error at the final time instant
T of the Euler-Maruyama scheme. It can be shown that there exist
constants K > 0 and δ0 > 0 such that

E(|X(T )− Y (tN)|) ≤ Kδ0.5

for any time discretization with maximum step size δ ∈ (0, δ0). We say
that the approximating process Y converges in the strong sense with
order 0.5. This is similar to how approximations are evaluated in deter-
ministic systems, only here we take expectations, since X(T ) and Y (tN)
are random variables. Compare with the Euler scheme for an ordinary
differential equation which has order of convergence 1. Sometimes we
do not need a close pathwise approximation, but only some function of
the value at a given final time T (e.g. E(X(T )), E(X(T )2) or generally
E(g(X(T )))). In this case we have that there exist constants K > 0 and
δ0 > 0 such that for any polynomial g

|E(g(X(T ))− E(g(Y (tN))))| ≤ Kδ

for any time discretization with maximum step size δ ∈ (0, δ0). We say
that the approximating process Y converges in the weak sense with order
1.
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3.2 Stochastic neuronal models

The previous neuronal models are deterministic. However, it has been
proved experimentally that similar input and similar experimental con-
ditions lead to different sequences of spikes generation. It is now popular
to deal with stochastic version of neuronal models to mimic the random-
ness observed in experiments.

3.2.1 Stochastic LIF models

In stochastic LIF models, the membrane potential is described as a
stochastic process, whereas the spike generation is due to the crossing of
a threshold from below by the process.

Wiener process

Gerstein and Mandelbrot describe the time evolution of the sub threshold
membrane potential through a Wiener process V (t). Their model was
motivated by experimental observations of the ISIs exhibiting histograms
typical of stable distributions.

dV (t) = Idt+ σdB(t), V (0) = V0 (3.6)

where B(t) is a standard Brownian motion.
To mimic the spiking times, a constant absorbing boundary S is in-

troduced. The spike times are then identified with the first passage time
T of the Wiener process originated at V (0) = V0 through the boundary.
To obtain the renewal property, the process is instantaneously reset to
V0 after each spike.
Properties of the Wiener process

Proposition 2. The moments of V (t) are E(V (t)) = V0+It and V ar(V (t)) =
σ2t. The transition density function of V (t) is Gaussian:

p(v, t|v0, 0) = 1√
2πσ2

exp
−(v − v0 − I t)2

2σ2t


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Proof. V (t) can be written in an integral form:

V (t) = V0 +
∫ t

0
Ids+ σ

∫ t
0
dB(s) = V0 + It+ σ

∫ t
0
dB(s)

As E(∫ t0 dB(s)) = 0, we have E(V (t)) = V0 + It. Then V ar(V (t)) =
σ2V ar(∫ t0 dB(s)) = σ2 ∫ s

0 ds = σ2t. 2

Ornstein-Uhlenbeck process

The most common stochastic LIF model is the Ornstein-Uhlenbeck pro-
cess, described by the following stochastic differential equation (SDE):

dV (t) =
−V (t)− V0

τ
+ I

 dt+ σ dB(t), V (0) = V0 (3.7)

where σ is the diffusion coefficient, B(t) is standard Brownian motion.
Generation of the action potentials is not a part of process (4.8). To

make a cell fire, a firing threshold is imposed at level S > V0. the
first time the process reaches the boundary level, an action potential
is emitted and the membrane potential is instantaneously reset to V0.
Then the evolution restarts anew according to the same law.
Properties of the OU process
Proposition 3. The conditional moments of V (t) are

E(V (t)|V (0) = V0) =
(
V0

τ
+ I

)
τ(1− e−t/τ) + V0e

−t/τ

V ar(V (t)|V (0) = V0) = σ2τ

2 (1− e−2t/τ)

Cov(V (t), V (s)|V (0) = V0) = σ2τ

2 (e−|s−t|/τ − e−(s+t)/τ)

Proof. Define Y (t) = et/τV (t) and applying the Ito’s formula with f(t, v) =
et/τv yields

dY (t) =
(1
τ
et/τV (t)− 1

τ
et/τV (t) + V0

τ
et/τ + et/τI

)
dt+ σet/τdB(t)
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Thus

Y (t) =
(
V0

τ
+ I

) ∫ t
0
es/τds+ σ

∫ t
0
es/τdB(s)

=
(
V0

τ
+ I

)
τ(et/τ − 1) + σ

∫ t
0
es/τdB(s)

Finally

V (t) =
(
V0

τ
+ I

)
τ(1− e−t/τ) + σ

∫ t
0
e−(t−s)/τdB(s)

The conditional moments can then be directly computed.2

We can deduce that the transition density function of V (t) is Gaussian:

p(v, t|v0, 0) = 1√
πσ2τ(1− e−2t/τ)

exp
−(v − v0 −

(
V0
τ + I

)
τ(1− e−t/τ)− V0e

−t/τ)2

σ2τ(1− e−2t/τ)



Feller process

In the OU process, the membrane potential is not limited from below. It
may happen that V (t) reaches unrealistic low values. The Feller process
includes a lower bound of the depolarization

dV (t) =
−V (t)− V0

τ
+ I

 dt+ σ
√
V (t)− VI dB(t), V (0) = V0 (3.8)

where VI is a new parameter, the minimum value allowed of the mem-
brane potential. It is called the inhibitory reversal potential. This pro-
cess is also called Cox-Ingersoll-Ross diffusion.

Generation of the action potentials is not a part of process (3.8) and
a firing threshold S is introduced, as for the OU process.
Properties of the Feller process
Let us introduce X(t) = V (t) − VI , and the parameters X0 = V0 − VI ,
µ = I + X0/τ . Then the Feller process X(t) is the solution of the
stochastic differential equation

dX(t) =
−X(t)

τ
+ µ

 dt+ σ
√
X(t)dB(t), X(0) = X0 (3.9)
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where X0 > 0 is the resetting point after emitting a spike, and the
inhibitory reversal potential is shifted to the zero level. We denote SX =
S − VI the firing threshold.

For 2µ ≥ σ2, the zero value is an inaccessible barrier. The process is
time-homogeneous.
Proposition 4. The conditional expectation of process (3.9) is

E(X(t)|X0, µ) = X0e
−t/τ + µτ(1− e−t/τ)

The conditional variance and covariance are

V ar(X(t)|X0, µ, σ
2) = σ2τ

2(1− e−t/τ)(µτ(1− e−t/τ) + 2X0e
−t/τ)

and for s < t,

Cov(X(t), X(s)X0, µ, σ
2) = e−(t−s)/τV ar(X(s)|X0, µ, σ

2)

Proof. The Feller process has the explicit solution

X(t) = (X0 − µτ)e−t/τ + σe−t/τ
∫ t

0
eu/τ

√
X(u)dB(u).

Under the hypothesis 2µ > σ2, the process is stationary. The conditional
transition density exists in explicit form. The process Y (t) = 2cX(t)
with c = 2/(τσ2(1−e−t/τ)) has a conditional distribution Y (t)|Y (0) = y0
which follows the law of the non central chi-squared distribution with
ν = 4µ/σ2 degrees of freedom and non centrality parameter y0e

−t/τ . The
transition density of X(t) can be easily obtain. 2

The transition density function is

p(x, t|x0) = ce−r−s
(
s

r

)q/2
Iq(2
√
rs)

where

c = 2
τσ2(1− e−t/τ) , q = 2µ

σ2 − 1, r = cx0e
−t/τ , s = cx

and Iq(·) is the modified Bessel function.
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3.2.2 Elliptic stochastic conductance based models

We study two types of stochastic conductance based models, elliptic or
hypoelliptic. We start with the elliptic case. Elliptic stochastic neuronal
models are diffusions with a non-degenerated diffusion coefficient.
FitzHugh-Nagumo model We introduce noise on two coordinates . Then
the elliptic FitzHugh-Nagumo model is

dV (t) = 1
ε

(
V (t)− V (t)3 − U(t)− I

)
dt+ σ1(V (t), U(t))dB1(t)

dU(t) = (γV (t)− U(t)− β) dt+ σ2(V (t), U(t))dB2(t)

where B1(t) and B2(t) are two independent Brownian motions.
Let us detail some properties of this model. First remark that the

conductance U(t) is not autonomous, but depends on V (t). The tran-
sition density of the couple (V (t), U(t)) is not explicit because of the
non-linearities in the drifts and the diffusion coefficients. The transition
density of (U(t)) given V (t) is not explicit neither.
Synaptic inhibitory-excitatory model

We consider that the two conductances are stochastic and that the
input is stochastic. This yields to the following elliptic system

dV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I(t)) dt+ γdB(t)

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt+ γdBi(t)

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt+ γdBe(t)

where B(t), Bi(t) and Be(t) are three independent Brownian motions.
Let us detail some properties of this model. First remark that two

conductances ginh(t) and gexc(t) are autonomous. They do not depend on
V (t). They are time homogeneous and they are described by a Ornstein-
Uhlenbeck process. The transition densities are Gaussian, with known
expectation and variances. For all i ≥ 1, with step size ∆, we have for
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both conductances:

g(ti+1) = g(ti)e−∆/τ + ḡ(1− e−∆/τ) + ηi, ηi ∼ N (0, σ
2τ

2 (1− e−2∆/τ))

Morris-Lecar model We consider both the stochastic conductances and
the stochastic input I. Then the elliptic Morris-Lecar model is

dV (t) = − (gfastm∞(t) (V (t)− Vfast) + gslowU(t)(V (t)− Vslow) + gL(V (t)− VL) + I(t)) dt+ γdB̃(t)
dU(t) = (α(V (t))(1− U(t))− β(V (t))U(t)) dt+ σ(V (t), U(t))dB(t)

where B̃(t) and B(t) are two independent Brownian motions.
Let us detail some properties of this model. First remark that the

conductance U(t) is not autonomous, but depends on V (t). The tran-
sition density of the couple (V (t), U(t)) is not explicit because of the
non-linearities in the drifts and the diffusion coefficients. The transition
density of (U(t)) given V (t) is not explicit neither. Fixing the value
of V (t) = v, Ditlevsen and Greenwood (2013) study the process U(t)
showing that it stays between 0 and 1.

3.2.3 Hypoelliptic stochastic conductance based models

Different sources of noise have been introduced in neuronal models and
the diffusion coefficient could be degenerate.
FitzHugh Nagump model Let us start with the FitzHugh Nagumo neu-
ronal model:

dV (t) = 1
ε

(
V (t)− V (t)3 − U(t)− I

)
dt

dU(t) = (γV (t)− U(t)− β) dt

Assuming only the second coordinate noisy yields to

dV (t) = 1
ε

(
V (t)− V (t)3 − U(t)− I

)
dt (3.10)

dU(t) = (γV (t)− U(t)− β) dt+ σ2(V (t), U(t))dB2(t) (3.11)
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The diffusion coefficient is degenerated because there is no noise on
the first component.

One can prove that the noise from the last component generates R2.
To prove this hypoelliptic property, we need first to write the system in
the Stratonovich form.

The Stratonovich form of (3.10) is dV (t) = b1(V (t), U(t))dt
dU(t) = b2(V (t), U(t))dt+ σ2(V (t), U(t)) ◦ dB2(t)

(3.12)

with b2(v, u) := b2(v, u)− 1
2σ2(u)∂uσ2(u).

Then we writing the coefficients of (3.12) as vector fields

A0(v, u) =
 b1(v, u)
b2(v, u)

 and A1(v, u) =
 0
σ2(v, u)


We need to define the Lie bracket
Definition 3. The Lie bracket [X, Y ] : M → Rn of the two vectors
X = ∑n

i=1X
iei, Y = ∑n

i=1 Y
iei is given by

[X, Y ] := JYX − JXY =
n∑
i=1

 n∑
j=1

(Xj∂jY
i − Y j∂jX

i)
 ei

where JY and JX are the Jacobian matrices of Y and X, respectively.
The Lie bracket of (3.12) leads to

[A0, A1] =
 −σ2(u, v)∂ub2
b1∂vσ2 + b2∂uσ2 − σ2∂ub2


Definition 4. A system is called hypoelliptic in the sense of stochastic
calculus of variations (Nualart, 2006) if the vector fields

A1(v, u) =
 0
σ2(v, u)


and the Lie Bracket [A0, A1] generate R2.
SIE model

Let us start with the SIE neuronal model assuming the capacitance
C = 1.
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dV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I(t)) dt

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt

Assuming the inhibitory and excitatory conductances are noisy yields
to

dV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I(t)) dt(3.13)

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt+ γi(ginh)dBi(t) (3.14)

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt+ γe(gexc)dBe(t) (3.15)

(3.16)

where Bi(t) and Be(t) are two independent Brownian motions and γi, γe
two diffusion coefficients. The diffusion coefficient is degenerated because
there is no noise on the first component.

First remark that two conductances ginh(t) and gexc(t) are autonomous.
They do not depend on V (t). They are time homogeneous.

One can prove that the noise from the two last components generates
R3. To prove this hypoelliptic property, we need first to write the system
in the Stratonovich form.

The Stratonovich form of (3.13) is
dV (t) = f(V (t), ginh(t), gexc(t))dt
dginh(t) = bi(V (t), ginh(t), gexc(t))dt+ γi(ginh(t)) ◦ dBi(t)
dgexc(t) = be(V (t), ginh(t), gexc(t))dt+ γe(gexc(t)) ◦ dBe(t)

(3.17)

with b(v, gi, ge) := b(v, gi, ge)− 1
2γ(g)∂gγ(g).

Then we writing the coefficients of (3.17) as vector fields

A0(v, gi, ge) =


f(v, gi, ge)
bi(v, gi, ge)
be(v, gi, ge)

 and A1(v, gi, ge) =


0

γi(gi)
γe(ge)


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Under conditions
1. −γi(gi)∂gibi − γe(ge)∂gebe 6= 0
2. the functions bi∂giγi−γi∂gibi and be∂geγe−γe∂gebe are not proportional

the vectors A1 and [A0, A1] generate R3 and system (3.17) is hypoelliptic.

A non hypoelliptic model Assuming the input function I(t) is noisy or
random (I(t) + ση(t)), yields to the following stochastic model

CdV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I(t)) dt+ σdB(t)

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt

whereB(t) is a Brownian motion. The diffusion coefficient is degenerated
but the noise from the first component can not distribute R3. This model
is not hypoelliptic, and will not be considered thereafter.

Morris-Lecar model Let us consider the deterministicMorris-Lecar model
assuming the capacitance C = 1.

dV (t) = − (gfastm∞(t) (V (t)− Vfast) + gslowU(t)(V (t)− Vslow) + gL(V (t)− VL) + I(t)) dt
dU(t) = (α(V (t))(1− U(t))− β(V (t))U(t)) dt

Assuming the slow conductance is random (from the Piecewise deter-
ministic Markov Process), then the stochastic ML model is defined by dV (t) = f(V (t), U(t))dt

dU(t) = b(V (t), U(t))dt+ σ(V (t), U(t))dB(t) (3.18)

where σ(V (t), U(t)) is the diffusion coefficient modeling the channel or
conductance noise. We consider the following function that ensures that
U(t) stays bounded in the unit interval is σ ≤ 1

σ(V (t), U(t)) = σ

√√√√√2 α(V (t))β(V (t))
α(V (t)) + β(V (t))U(t)(1− U(t)).
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Now we study the property of the system (3.18).
Assume that the following condition holds

(C1) ∀(v, uz) ∈ R× R, ∂uf(v, u) 6= 0

Under assumption (C1), system (3.18) is hypoelliptic in the sense of
stochastic calculus of variations (Nualart, 2006). Indeed, the Stratonovich
form of (3.18) is dV (t) = f(V (t), U(t))dt

dU(t) = b̃(V (t), U(t))dt+ σ(V (t), U(t)) ◦ dB(t) (3.19)

with b̃(v, u) := b(v, u) − 1
2σ(v, u)∂uσ(v, u). Writing the coefficients of

(3.19) as vector fields

A0(v, u) =
 f(v, u)
b̃(v, u)

 and A1(v, u) =
 0
σ(v, u)


and computing their Lie bracket leads to

[A0, A1] =
 σ(v, u)∂uf(v, u)

g(v, u)


The form of g is explicit but not detailed here. Under condition (C1)
the vectors A1 and [A0, A1] generate R2 and system (3.18) is hypoelliptic.
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Chapter 4

Estimating intra-cellular recordings
with one-dimensional SDE

4.1 Assumptions

We assume that X is a process satisfying the following SDE

dX(t) = bθ(X(t))dt+ σθ(X(t))dB(t). (4.1)

We assume that the process is observed at discrete times ti = i∆, i =
1, . . . , n and T = n∆. We denote Xi = Xi∆. We denote Fn = σ{Xi, i ≤
n} the σ-field generated by the first n observations.

We want to estimate the parameters θ from the discrete observations
(Xi)1≤i≤n. In the following, we assume that

1. Linear growth assumption There exists a constant K indepen-
dent of θ such that for all x

|bθ(x)|+ |σθ(x)| ≤ K(1 + |x|)

2. Global Lipschitz assumption There exists a constant K indepen-
dent of θ such that

|bθ(x)− bθ(y)|+ |σθ(x)− σθ(y)| ≤ K|x− y|

3. Positiveness of diffusion coefficient

inf
x
σ2
θ(x) > 0
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4. Bounded moments For all k > 0, all moments of order k of the
diffusion process exist and are such that

sup
t

E|X(t)|k <∞

4.2 Maximum likelihood estimation

Using the Markov property of X, the likelihood is defined by

Ln(θ) =
n∏
i=1

pθ(Xi|Xi−1,∆)pθ(X0)

where pθ(Xi|Xi−1,∆) is the transition density of X for a time step ∆.
We denote by `n(θ) = logLn(θ) the log-likelihood function

`n(θ) =
n∑
i=1

log pθ(Xi|Xi−1,∆) + log(pθ(X0))

Then we define the maximum likelihood estimator as

θ̂n = arg max `n(θ).

We can prove the following theorem (Kessler, 1997)
Theorem 1. Suppose assumptions 1-4 are satisfied. If θ = (θ1, θ2) ∈ Θ,
Θ a compact subset of Rp, bθ(x) = bθ1(x) and σθ(x) = σθ2(x), then
the maximum likelihood estimators obtained on the conditional likelihood
`n(θ) are consistent and asymptotically normal: √n∆(θ̂n,1 − θ1,0)√

n(θ̂n,2 − θ2,0)

→d N (0, I−1(θ0)) (4.2)

with

I(θ0)−1 =


(∫ (∂θ1b(x,θ1,0)

σ(x,θ2,0)

)2
π(dx)

)−1
0

0 2
(∫ (∂θ2σ(x,θ2,0)

σ2(x,θ2,0)

)2
π(dx)

)−1


(4.3)

where θ1,0 and θ2,0 are the true values of the parameter and π(·) is the
invariant density of the diffusion process.
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Example 3. Let us consider the Wiener process

dV (t) = Idt+ σdB(t), V (0) = V0. (4.4)

The parameters to be estimated are θ = (I, σ). The log-likelihood is

`n(θ) = −n2 log(2πσ2∆)− 1
2

n∑
i=1

(Vi − Vi−1 − I∆)2

∆σ2

Deriving the likelihood, we obtain the score function
∂`n(θ)
∂I

= 1
σ2

n∑
i=1

(Vi−Vi−1−I∆), ∂`n(θ)
∂σ2 = − n

2σ2 + 1
2∆σ4

n∑
i=1

(Vi−Vi−1−I∆)2.

Thus the maximum likelihood estimators are

Î = 1
n∆

n∑
i=1

(Vi − Vi−1), σ̂2 = 1
n∆

n∑
i=1

(Vi − Vi−1 − Î∆)2

Applying the law of large numbers and the central limit theorem, we
obtain

1√
n∆

∂`n(θ)
∂I

= 1
σ

n√
n

1
n

∑n
i=1(Vi − Vi−1)− I∆√

∆σ
= 1
σ

√
n

1
n

∑n
i=1(Vi − Vi−1)− I∆√

∆σ
Noticing that

√
n

1
n

∑n
i=1(Vi − Vi−1)− I∆√

∆σ
−→L N (0, 1)

We obtain
1√
n∆

∂`n(θ)
∂I

−→L N (0, 1
σ2 )

Similarly, we can show that

1√
n

∂`n(θ)
∂σ2 = 1√

n
n

1
n

∑n
i=1(Vi − Vi−1 − I∆)2 −∆σ2

2∆σ4 =
√
n√

2σ2

1
n

∑n
i=1(Vi − Vi−1 − I∆)2 −∆σ2

√
2∆σ2

Using the fact that var(X2) = 2var(X)2 for a centered Gaussian vari-
able, we prove that

√
n

1
n

∑n
i=1(Vi − Vi−1 − I∆)2 −∆σ2

√
2∆σ2 −→L N (0, 1)
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and we get
1√
n

∂`n(θ)
∂σ2 −→L N (0, 1

2σ4 )

Finally,  1√
n∆

∂
∂I `n(θ)

1√
n

∂
∂σ2`n(θ)

 −→ N2(0, I(θ))

where I(θ) is the Fisher information matrix

I(θ) =
 1

σ2 0
0 1

2σ4

 (4.5)

Computing the second derivatives, we obtain
∂2`n
∂I2 = −n∆

σ2 ,
∂2`n
∂I∂σ2 = − 1

σ4

n∑
i=1

(Vi−Vi−1−I∆), ∂2`n
∂(σ2)2 = n

2σ4−
1

σ6∆
n∑
i=1

(Vi−Vi−1−I∆)2

We have:
− 1
n∆

∂2`n
∂I2 = 1

σ2

For the second term, we use the fact that E(Vi − Vi−1 − I∆) = 0 and
1
n2E((∑n

i=1(Vi − Vi−1 − I∆))2) = nσ2∆
n2 → 0 to prove that

−1
n

1
σ4

n∑
i=1

(Vi − Vi−1 − I∆) −→P 0

For the last term, we use E((Vi − Vi−1 − I∆)2) = ∆σ2, thus

1
n

 n

2σ4 −
1

σ6∆
n∑
i=1

(Vi − Vi−1 − I∆)2
 = − 1

2σ4

Finally the matrix of the Hessian converges to the Fisher Information
matrix:

−
 1

n∆
∂2

∂I2`n(θ) 1
n∆

∂2

∂I∂σ2`n(θ)
1
n

∂2

∂I∂σ2`n(θ) 1
n

∂2

∂σ2∂σ2`n(θ)

 −→P I(θ)

Then, we note that

−∂`n(θ0) = (θ̂ − θ0)′∂2`n(θ0) +O(1)
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to prove √n∆(În − I0)√
n(σ̂2

n − σ2
0)

 = −
 √n∆√

n

 ∂`n(θ0)(∂2`n(θ0))−1 = −
 1√

n∆∂I`n(θ0)
1√
n
∂σ`n(θ0)


 1

n∆
∂2

∂I2`n(θ) 1
n∆

∂2

∂I∂σ2`n(θ)
1
n

∂2

∂I∂σ2`n(θ) 1
n

∂2

∂σ2∂σ2`n(θ)

−1

(4.6)
Using Slutsky lemma and the previous results, we can prove that √n∆(În − I0)√

n(σ̂2
n − σ2

0)

→d N (0, I−1(θ0)) (4.7)

The definition of I(θ) in theorem 1 leads to the same formula.

Example 4. We consider the Ornstein-Uhlenbeck process

dV (t) = −
V (t)− α

τ

 dt+ σdB(t), V (0) = V0. (4.8)

Eq. 4.8 provides an explicit expression of Vi+1 as a function of Vi and
θ = (τ, α, σ):

Vi+1 = Vie
−∆/τ + α(1− e−∆/τ) + ηi, ηi ∼ N (0, σ

2τ

2 (1− e−2∆/τ)).(4.9)

The |og likelihood is thus explicit and equal to

`n(θ) =
n∑
i=1

logϕ
Vi+1;Vie−

∆
τ + α(1− e−∆

τ ), σ
2τ

2 (1− e− 2∆
τ )
 ,

where ϕ(x;µ, σ2) denotes the density of a Gaussian variable with mean
µ and variance σ2. The unique maximum of the likelihood function
provides the MLE θ̂ = (τ̂ , α̂, σ̂2), given by two equations. Let X =
((1 . . . 1)′V1:n−1), ρ = e−∆/τ , β = α(1− ρ), then

(β̂ ρ̂)′ = (X ′X)−1X ′V2:n

α̂ = β̂/(1− ρ̂)

σ̂2 = 2∑n
i=1(Vi+1 − α̂− (Vi − α̂)e−4/τ̂)2

n(1− e−24/τ̂)τ̂
It requires that ∑n

j=1(Vi+1 − α̂)(Vi − α̂) > 0. Otherwise there is no
solution.
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4.3 Least squares

Usually, the transition density is unknown so maximum likelihood esti-
mation on the true likelihood of the process is a rare case. When the
moments are known, least squares estimators can be used. This is the
case of the Feller process.

Example 5. We consider the Feller process

dV (t) =
−V (t)

τ
+ µ

 dt+ σ
√
V (t)− VI dB(t), V (0) = V0. (4.10)

A spike is emitted when the membrane voltage V (t) hits the threshold S.
Several estimation methods have been proposed for the Feller model

(see Bibbona et al., 2010, for a review). We study the least-squares and
the conditional least-squares methods. We focus on the estimation of µ
and σ. We assume that the membrane potential is observed at discrete
times ti = i∆ where h is the step size.

4.3.1 Least-squares method

The least-squares estimator of µ is defined as the minimizer of the func-
tion

LS1(µ) =
n∑
i=1

(Vi − E(Vi|V0, µ))2

=
n∑
i=1

(
Vi − V0e

−i∆/τ + µτ(1− e−i∆/τ)
)2

with respect to µ. The solution is

µ̂LS =
∑n
i=1(Vi − V0e

−i∆/τ)(1− e−i∆/τ)
τ
∑n
i=1(1− e−i∆/τ)2

We can easily prove that E(µ̂LS) = µ. The variance of µ̂LS is

V ar(µ̂LS) =
∑n
i=1

∑n
j=1(1− e−j∆/τ)(1− e−i∆/τ)Cov(Vi, Vj|V0, µ, σ

2)
τ 2
[∑n

k=1(1− e−k∆/τ)2
]2 .
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Then, we estimate σ2 as the minimizer of the function

LS2(σ2) =
n∑
i=1

[
(Vi − E(Vi|V0, µ))2 − E(Vi − E(Vi|V0, µ))2]2

We replace µ by its estimator µ̂LS in this criterion. Then, we obtain the
estimator

σ̂2
LS =

∑n
i=1(Vi − E(Vi|V0, µ̂LS))2 τ

2(1− e−i∆/τ)(µ̂LSτ(1− e−i∆/τ) + 2V0e
−i∆/τ)∑n

i=1(τ2(1− e−i∆/τ)(µ̂LSτ(1− e−i∆/τ) + 2V0e−i∆/τ))2

The estimator σ̂2
LS is biased because we use the value µ̂LS instead of

µ.

4.3.2 Conditional least-squares method

The conditional least-squares method used the conditional expectation
and variance. The criterion function is thus

CLS1(µ) =
n∑
i=1

(Vi − E(Vi|Vi−1, µ))2

=
n∑
i=1

(
Vi − Vi−1e

−∆/τ)2

with respect to µ. The solution is

µ̂CLS =
∑n
i=1(Vi − Vi−1e

−∆/τ)
nτ(1− e−∆/τ)

The estimator µ̂CLS is unbiased. The variance is

V ar(µ̂CLS) = σ2e
−∆/τ(1− e−n∆/τ)(V0 − µτ) + nµτ

2 (1− e−2∆/τ)
n2τ(1− e−∆/τ)2

Then, we estimate σ2 as the minimizer of the function

CLS2(σ2) =
n∑
i=1

[
(Vi − E(Vi|Vi−1, µ))2 − E((Vi − E(Vi|Vi−1, µ))2|Vi−1)

]2
We replace µ by its estimator µ̂CLS in this criterion. Then, we obtain
the estimator

σ̂2
CLS = n

n− 1

∑n
i=1(Vi − E(Vi|Vi−1, µ̂CLS))2 τ

2(1− e−∆/τ)(µ̂LSτ(1− e−∆/τ) + 2Vi−1e
−∆/τ)∑n

i=1(τ2(1− e−∆/τ)(µ̂CLSτ(1− e−∆/τ) + 2Vi−1e−∆/τ))2
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4.4 Pseudo-likelihood estimation

When the transition density and the moments of the process are un-
known, the Euler scheme can be used to approximate the likelihood.
This leads to a pseudo-likelihood approach.

The Euler scheme produces the following discretization of SDE (4.1).

X(t+ ∆) = X(t) + ∆bθ(X(t)) +
√

∆σθ(X(t))η,

where η ∼ N (0, 1). Therefore the transition density of the process can
be written as

pθ(y|x,∆) = 1√
2π∆σ2

θ(x)
exp

−1
2

(y − x− bθ(x)∆)2

∆σ2
θ(x)


This approximation is good if ∆ is small. Otherwise some bias is intro-
duced.

The log-likelihood of the discretized process, also called the locally
Gaussian approximation or the pseudo-likelihood, is

`n(θ) = −1
2


n∑
i=1

(Xi −Xi−1 −∆bθ(Xi−1))2

∆σ2
θ(Xi−1)

+
∑
i

log(2π∆σ2
θ(Xi−1))


Note that if the diffusion coefficient is constant σ(x) = σ > 0, then we

want to estimate the parameters σ and θ. Given that σ2 is constant, the
maximization of the pseudo-likelihood is equivalent to the maximization
of the function

n∑
i=1

(Xi −Xi−1)bθ(Xi−1)−
∆
2

n∑
i=1

b2
θ(Xi−1)

We can prove the following theorem (Kessler, 1997)
Theorem 2. Suppose assumptions 1-4 are satisfied. If θ = (θ1, θ2) ∈ Θ,
Θ a compact subset of Rp, bθ(x) = bθ1(x) and σθ(x) = σθ2(x), then the
pseudo likelihood estimators obtained on the conditional pseudo likelihood
`n(θ) are consistent and asymptotically normal if n→∞, n∆→∞ and
n∆2 → 0:  √n∆(θ̂n,1 − θ1,0)√

n(θ̂n,2 − θ2,0)

→d N (0, I−1
0 ) (4.11)
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with

I−1
0 =


(∫ (∂θ1b(x,θ1,0)

σ(x,θ2,0)

)2
π(dx)

)−1
0

0 2
(∫ (∂θ2σ(x,θ2,0)

σ2(x,θ2,0)

)2
π(dx)

)−1

 (4.12)

where θ1,0 and θ2,0 are the true values of the parameter and π(·) is the
invariant density of the diffusion process.
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Chapter 5

Estimation for multidimensionnal
elliptic SDE

We consider in this section the case of multi dimensional elliptic SDE.
We first treat the ideal case of complete observations. In practice, only
the first coordinate V (t) is observed at discrete times. The other com-
ponents are hidden. Two cases have to be distinguished depending on
whether the hidden components are autonomous or not. When they are
autonomous, then the observations can be considered as observations of
a hidden Markov model (HMM). If not, the HMM is degenerated and
more complex estimation methods have to be considered.

5.1 Ideal case of complete observations

Let us start with the ideal case of complete observations of a multidi-
mensional neuronal SDE. For example, we consider the simple model:

dV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I) dt+ γvdB(t)(5.1)

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt+ γidBi(t) (5.2)

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt+ γedBe(t) (5.3)

where B(t), Bi(t) and Be(t) are three independent Brownian motions.
The transition density and the moments of this multidimensional

process are unknown because of the non-linear drift. A multidimen-
sional version of the Euler scheme can be used to approximate the like-
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lihood. This leads to a pseudo-likelihood approach, as seen in the one-
dimensional case.

Let us denote Z(t) = (V (t), ginh(t), gexc(t)). The Euler scheme pro-
duces the following discretization of SDE (5.1).

Z(t+ ∆) = Z(t) + ∆b(Z(t), θ) +
√

∆Γη,

where η ∼ N (0, I3), Γ = diag(γv, γi, γe) and b(Z(t), θ) = (bv(Z(t), θ), bi(Z(t), θ), be(Z(t), θ)).
The log-likelihood of the discretized process is

`n(θ) = −1
2


n∑
i=1

(Zi − Zi−1 −∆b(Zi−1, θ))′(∆ΓΓ′)−1(Zi − Zi−1 −∆b(Zi−1, θ)) + n log(2π∆ det(ΓΓ′))


Because the diffusion coefficient is diagonal, this is equivalent to

`n(θ) = −1
2

∑
k=v,i,e


n∑
i=1

(Zk,i − Zk,i−1 −∆bk(Zk,i−1, θ))2

∆γ2
k

+ n log(2π∆γ2
k)


The estimator is then defined as

θ̂n = arg max `n(θ)

Theoretical results obtained for one-dimensional SDE can be generalized
to the multidimensional case. In the neuronal models, the drift is linear
in the parameters. Therefore, the optimization of the contrast is explicit.

5.2 Incomplete observations with autonomous hidden compo-
nents

We consider the following elliptic system

dV (t) = − (ginh(t)(V (t)− Vinh) + gexc(t)(V (t)− Vexc) + I) dt+ γvdB(t)(5.4)

dginh(t) = − 1
τinh

(ginh(t)− ḡinh)dt+ γidBi(t) (5.5)

dgexc(t) = − 1
τexc

(gexc(t)− ḡexc)dt+ γedBe(t) (5.6)

where B(t), Bi(t) and Be(t) are three independent Brownian motions.
The two hidden components are autonomous. Their solution is explicit

(and thus their transition densities). For all i ≥ 1, with step size ∆, we
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have for both conductances:

g(ti+1) = g(ti)e−∆/τ + ḡ(1− e−∆/τ) + ηi, ηi ∼ N (0, σ
2τ

2 (1− e−2∆/τ))
(5.7)

5.2.1 A Hidden Markov Model

Thus the discretization of the system leads to a hidden Markov model.
Let us denote Xi = (ginh(ti), gexc(ti)) and Yi = V (ti). (Xi) is a bidimen-
sional Markov process given its explicit solution (5.7).

The standard definition of a HMM is the following:
Definition 5. A hidden Markov model is a bivariate discrete time pro-
cess (Yi, Xi)i≥0 where (Xi)i≥0 is a Markov chain and conditional on (Xi),
(Yi) is a sequence of independent random variables such that the condi-
tional distribution of Yi only depends on Xi.

This definition is sufficient in most cases (for example in genetics).
But this is not the case for the neuronal system, because conditional
on (Xi), Yi is not a sequence of independent random variables. More
precisely, the conditional distribution of Yi depends on Xi−1, Yi−1.

Thus we need a more general definition of HMM, given by Cappe,
Moulines and Ryden.
Definition 6. A HMM with not countable state space is defined as a
bivariate Markov chain (Xi, Yi) with only partial observations Yi, whose
transition kernel has a special structure: both the joint process (Xi, Yi)
and the marginal hidden chain (Xi) are Markovian.
Yi is not Markovian itself, but (Yi, Xi) is Markovian. Thus (Xi, Yi) is

a HMM with this definition.

5.2.2 Likelihood function

We want to estimate the parameter θ by maximum likelihood of the
approximate model, with likelihood

p∆(V0:n; θ) =
∫
p(V0, X0; θ)

n∏
i=1

p∆(Vi, Xi|Vi−1, Xi−1; θ)dX0:n. (5.8)
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It corresponds to a pseudo-likelihood for the exact diffusion. The multi-
ple integrals of equation (5.8) are difficult to handle and it is not possible
to maximize the pseudo-likelihood directly.

A solution is to consider the statistical model as an incomplete data
model. The observable vector V0:n is then part of a so-called complete
vector (V0:n, X0:n), where X0:n has to be imputed. To maximize the
likelihood of the complete data vector (V0:n, X0:n), we propose to use a
stochastic version of the EM algorithm, namely the SAEM algorithm
(Delyon et al, 1999).

5.2.3 EM algorithm

The EM algorithm (Dempster et al, 1977) is useful in situations where
the direct maximization of the marginal likelihood θ → p∆(V0:n ; θ) is
more difficult than the maximization of the conditional expectation of
the complete likelihood Q(θ|θ′) = E∆ [log p∆(V0:n, X0:n; θ)|V0:n; θ′] , where
p∆(V0:n, X0:n; θ) is the likelihood of the complete data (V0:n, X0:n) of the
approximate model and the expectation is under the conditional distribu-
tion of X0:n given V0:n with density p∆(X0:n|V0:n; θ′). The EM algorithm
is an iterative procedure: at the mth iteration, given the current value
θ̂m−1,

[EM algorithm]
• Iteration 0: initialization of θ̂0

• Iteration m ≥ 1:

E-Step: evaluation of Qm(θ) = Q(θ | θ̂m−1)
M-Step: update of θ̂m by θ̂m = arg max

θ∈Θ
Qm(θ).

Let us describe the principle of the EM algorithm.
Proposition 5. The sequence (θ̂m) produced by the EM algorithm is such
that for all m ≥ 0, L(θ̂m) ≥ L(θ̂m−1).
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Proof. Write the likelihood as

p(V0:n; θ) = p(V0:n, X0:n; θ)
p(X0:n|V0:n; θ)

Taking the log, we obtain

log p(V0:n; θ) = log p(V0:n, X0:n; θ)− log p(X0:n|V0:n; θ)

Taking the conditional expectation, we have

E(log p(V0:n; θ)|V0:n, θ
′) = E(log p(V0:n, X0:n; θ)|V0:n, θ

′)− E(log p(X0:n|V0:n; θ)|V0:n, θ
′)

Ln(θ) = log p(V0:n; θ) = Q(θ|θ′)−H(θ|θ′)

Consider two successive values θ̂m−1 and θ̂m. We have

Ln(θ̂m)− Ln(θ̂m−1) = Q(θ̂m|θ̂m−1)−Q(θ̂m−1|θ̂m−1)− (H(θ̂m|θ̂m−1)−H(θ̂m−1|θ̂m−1))

By definition of the M-step, we have Q(θ̂m|θ̂m−1) − Q(θ̂m−1|θ̂m−1) ≥ 0.
Then, we study the last term:

H(θ̂m|θ̂m−1)−H(θ̂m−1|θ̂m−1) =
∫

log p(X0:n|V0:n; θ̂m)
p(X0:n|V0:n; θ̂m−1)

p(X0:n|V0:n; θ̂m−1)dX0:n

≤ log
∫ p(X0:n|V0:n; θ̂m)
p(X0:n|V0:n; θ̂m−1)

p(X0:n|V0:n; θ̂m−1)dX0:n

= log
∫
p(X0:n|V0:n; θ̂m)dX0:n = log 1 = 0

using the Jensen inequality for a concave function ϕ: ∫
ϕ(g(x))dx ≤

ϕ(∫ g(x)dx). Finally,

Ln(θ̂m)− Ln(θ̂m−1) ≥ 0

2

At each iteration of the EM algorithm, the likelihood increases. It
does not mean that the sequence converges to the maximum argument
of the likelihood.

The convergence of the algorithm can be proved for an exponential
family. More precisely, we assume:

(M1) The parameter space Θ is an open subset of Rp. The complete
likelihood p∆(V0:n, X0:n; θ) belongs to a curved exponential family,
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i.e. log p∆(V0:n, X0:n; θ) = −ψ(θ) + 〈S(V0:n, X0:n), ν(θ)〉, where ψ
and ν are two functions of θ, S(V0:n, X0:n) is known as the minimal
sufficient statistic of the complete model, taking its value in a subset
S of Rd, and 〈·, ·〉 is the scalar product on Rd.

Assumption (M1) is satisfied by the Euler approximation of system
(5.4). Indeed, we have

log p(V1:n, X1:n) = −1
2

n∑
i=1

(Vi − Vi−1 + ∆(ginh,i−1(Vi−1 − Vinh) + gexc,i−1(Vi−1 − Vexc) + I))2

γ2
v

−1
2

n∑
i=1

(ginh,i − ginh,i−1 + ∆(ginh,i−1 − ḡinh))2

γ2
i

− 1
2

n∑
i=1

(gexc,i − gexc,i−1 + ∆(gexc,i−1 − ḡexc))2

γ2
e

−n log 2πγ2
V γ

2
i γ

2
e

Then, the sufficient statistics are
n∑
i=1

(Vi − Vi−1 + ∆ginh,i−1Vi−1 + gexc,i−1Vi−1)2,
n∑
i=1

g2
inh,i−1,

n∑
i=1

g2
exc,i−1

n∑
i=1

(Vi − Vi−1 + ∆ginh,i−1Vi−1 + gexc,i−1Vi−1)ginh,i−1,
n∑
i=1

(Vi − Vi−1 + ∆ginh,i−1Vi−1 + gexc,i−1Vi−1)gexc,i−1,

n∑
i=1

(ginh,i − ginh,i−1 + ∆ginh,i−1)2,
n∑
i=1

(ginh,i − ginh,i−1 + ∆ginh,i−1),
n∑
i=1

(gexc,i − gexc,i−1 + ∆gexc,i−1)2,
n∑
i=1

(gexc,i − gexc,i−1 + ∆gexc,i−1)

Under assumption (M1), the E-step reduces to the computation of E∆
[
S(V0:n, X0:n)|V0:n; θ̂m−1

]
.

[EM algorithm for exponential family]
• Iteration 0: initialization of θ̂0

• Iteration m ≥ 1:

E-Step: evaluation of sm = E∆
[
S(V0:n, X0:n)|V0:n; θ̂m−1

]
M-Step: update of θ̂m by θ̂m = arg max

θ∈Θ
(−ψ(θ) + 〈sm, ν(θ)〉) .
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Theorem 3 (Wu, 1983). Assume the complete data model belongs to the
exponential family. Then all the limit points of the sequence θ̂m generated
by the EM algorithm are stationary points of Ln(θ) and L(θ̂m) converges
monodically to some value L∗ = L(θ∗) for some stationary point θ∗.

Furthermore, if ||θ̂m − θ̂m−1|| → 0 as m → ∞, then θ̂m converges to
θ∗ where θ∗ is one of the stationary point of Ln(θ).

To implement the EM algorithm, we need to compute the conditional
expectation of X0:n given V0:n. This conditional distribution p(X0:n|V0:n)
is called the filtering or smoothing distribution. For a linear Gaus-
sian model, the filtering distribution can be exactly computed with the
Kalman filter. Otherwise, the filtering distribution is generally not ex-
plicit and has to be approximated. This is the purpose of new particle
filter techniques.

5.2.4 Kalman Filter

In this section, we will consider the case of a linear Gaussian model
(which is not the case of model (5.4)). We consider here the Gaussian
linear state-space model

Yk = BkXk + SVk

Xk+1 = AkXk +RUk

where (Uk)k≥1 and (Vk)k≥1 are two independent Gaussian sequences such
that Uk ∼ N (0, I) and Vk ∼ N (0, I). The matrices Ak, Bk, S, R are
of appropriate dimensions and contain the parameters. In this section
we assume the parameters are fixed to the current value of the EM
algorithm.

We are interesting in computing the filtered distribution p(Xk|Y1:k) for
k = 1, . . . , n, especially X̂k|1:k = E(Xk|Y1:k); and the predictive distri-
bution p(Xk|Y1:k−1) for k = 1, . . . , n, especially X̂k|1:k−1 = E(Xk|Y1:k−1).
The following elementary lemma is instrumental in computing the pre-
dictive and filtered state estimator.
Lemma 1. Let X and V be two independent Gaussian random vectors
with E(X) = µX, Cov(X) = ΣX, E(V ) = 0, and Cov(V ) = ΣV . Con-
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sider the model
Y = BX + V

where B is a deterministic matrix of appropriate dimensions. Assume
that BΣXB

′ + ΣV is a full rank matrix. Then

E(X|Y ) = E(X) + Cov(X, Y )(Cov(Y ))−1(Y − E(Y ))
= µX + ΣXB

′(BΣXB
′ + ΣV )−1(Y −BµX)

and

Cov(X|Y ) = Cov(X − E(X|Y ))
= ΣX − ΣXB

′(BΣXB
′ + ΣV )−1BΣX

Proof. Denote by X̂ = E(X) + Cov(X, Y )(Cov(Y ))−1(Y − E(Y )). We
have

X − X̂ = X − E(X)− Cov(X, Y )(Cov(Y ))−1(Y − E(Y ))

which implies that

Cov(X − X̂, Y ) = Cov(X, Y )− Cov(X, Y )(Cov(Y ))−1Cov(Y ) = 0

The random vectors Y and X − X̂ are jointly Gaussian (as linear trans-
formation of a Gaussian multivariate random vector) and uncorrelated.
Hence Y and X − X̂ are also independent. Writing X = X̂ + (X − X̂),
X − X̂ is independent of Y , X̂ is σ(Y )-mesurable (as a linear combi-
nation of the components of Y ), thus X̂ = E(X|Y ). Moreover because
X − X̂ is independent of Y

Cov(X|Y ) = Cov((X − X̂)(X − X̂)′|Y ) = Cov(X − X̂)
= E((X − X̂)(X − X̂)′) = E((X − X̂)X ′)
= E((X − E(X)− Cov(X, Y )(Cov(Y ))−1(Y − E(Y ))X ′))
= Cov(X)− Cov(X, Y )(Cov(Y ))−1E((Y − E(Y ))X ′)
= Cov(X)− Cov(X, Y )(Cov(Y ))−1Cov(X, Y )′

= Cov(X)− Cov(X, Y )(Cov(Y ))−1Cov(X, Y )′

2

Applying the formula of the lemma to the Gaussian linear morel, we
obtain the following proposition.
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Proposition 6. The filtered mean and covariance matrices X̂k|1:k =
E(Xk|Y1:k) and Σk|k1: = Cov(Xk|Y1:k); and the predictive mean and co-
variance matrices X̂k|1:k−1 = E(Xk|Y1:k−1) and Σk|1:k−1 = Cov(Xk|Y1:k−1)
can be computed as follows, for k ≥ 0:

Filtering

X̂k|1:k = X̂k|1:k−1 + Σk|1:k−1B
′
k(BkΣk|1:k−1B

′
k + SS ′)−1(Yk −BkX̂k|1:k−1)

Σk|1:k = Σk|1:k−1 − Σk|1:k−1B
′
k(BkΣk|1:k−1B

′
k + SS ′)−1BkΣk|1:k−1

Prediction

X̂k+1|1:k = AkX̂k|1:k

Σk+1|1:k = 1kΣk|1:k1′k +RR′

Proof. To compute the filtered distribution, we apply the Lemma to

Yk = BkXk + Vk

with Xk ∼ N (X̂k|1:k−1,Σk|1:k−1). The predictive moments correspond to
the moments of

Xk+1 = AXk +RUk

considering Xk ∼ N (X̂k|1:k,Σk|1:k) and Uk ∼ N (0, I). 2

Using Proposition 6, one can compute the conditional expectation of
the sufficient statistics in the EM algorithm.

When the model is non-linear (as the neuronal model), it does not
enter the family of linear Gaussian state space model. Extended versions
of the Kalman filter have been proposed, where the drift and the diffusion
coefficient are linearized with respect to X and V . But there is no
guarantee on the accuracy of the estimators.

Therefore, stochastic approximation of the filtering distribution has
to be considered.

5.2.5 Monte Carlo integration

In this section, we consider sampling the unknown sequence of states
X0, . . . , Xn, conditionally on the observed sequence Y0, . . . , Yn.
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We want to compute an expectation, which is an integral. When the
analytic evaluation is not possible, numerical integration can become
time consuming (increase exponentially with the dimension of the prob-
lem).

Thus it is useful to consider other methods for evaluating integrals.
There are methods that do not surfer so directly from the curse of di-
mensionality, as Monte-Carlo integration.

The idea is the following. The strong law of large numbers says that if
ξ1, ξ2, . . . , ξN is a sequence of iidX-valued random variable with common
probability distribution π, then the estimator

π̂N(f) = 1
N

N∑
k=1

f(ξk)

converges almost surely to π(f) for all π-integrable functions f .
Increasing the number N can render the approximation error arbitrar-

ily small. If
π(|f |2) =

∫
|f(x)|2π(dx) <∞,

the central limit theorem shows that
√
N(π̂N(f)− π(f))→LN→∞ N (0, σ2

N(π(f)))

where σ2
N(π, f) = 1

N

∑N
i=1(f(ξk)− π̂N(f))2.

This MC integration approximates the expectation under the distri-
bution π, but requires to be able to simulate under π. This is not the
case for the conditional distribution π(X0:n) = p(X0:n|V0:n). Indeed, we
have

π(X0:n) = p(X0:n|V0:n) = p(X0:n, V0:n)
p(V0:n)

where p(X0:n, V0:n) = ∏n
i=1 p(Xi, Vi|Xi−1, Vi−1) is known analytically but

where the normalizing constant p(V0:n = ∫
p(X0:n, V0:n)dX0:n is unknown.

Thus, we need a method to simulate under any distribution π, even if π
is not analytically known.

A first standard method is the Markov Chain Monte Carlo methodol-
ogy.
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5.2.6 Markov Chain Monte Carlo

This class of MCMC method relies on Markov-dependent simulations.
This Markov has nothing to do with the hidden Markov model. Two
main algorithms have been proposed Metropolis-Hastings and Gibbs.
The idea is the following. Let (ξk)k≥1 be a Markov-dependent sequence
with stationary distribution π (meaning that if ξk is distributed with
π, ξk+1 is distributed with π). The ergodic theorem for Markov chains
asserts that under suitable conditions

π̂N(f) = 1
N

N∑
k=1

f(ξk)

is an estimate of Eπ(f) = ∫
f(x)π(x)dx.

We now present the Metropolis-Hastings algorithm. We use what is
called a proposal distribution q.

[Metropolis-Hastings algorithm] Given ξk,
1. Generate ξ ∼ q(ξk; ·)

2. Set

ξk+1 =
 ξ with probability α(ξk, ξ) = min

(
1, π(ξ)q(ξ,ξk)

π(ξk)q(ξk,ξ)

)
ξk

(5.9)

The quantity α(ξk, ξ) is often called the acceptance-ratio of the MH
algorithm.
Proposition 7. The chain (ξk)k≥0 generated by the Metropolis-Hastings
algorithm has π as stationary probability density function.
Remarks

1. The simulation is realized under the proposal distribution q. So we
don’t need to know how to simulate under π.

2. The proposal distribution has to be chosen such that the candidate
ξ is more likely to be accepted.
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3. In the acceptance ratio, we do not need to know explicitly π but the
ratio of π(ξ)/π(ξk). This allows the algorithm to be used without
knowing the normalizing constant.

This algorithm may be applied to hidden Markov models for simulat-
ing from the posterior distribution of X0:n given the observations V0:n
because the conditional distribution π(X0:n) = p(X0:n|V0:n) is known up
to the normalizing factor p(V0:n). Then, we have to chose a proposal
distribution to generate a candidate, i.e. a new trajectory ξ = X0:n

Two important classes of MH algorithms are now presented.

• The independent Metropolis-Hastings algorithm uses a proposal dis-
tribution q which is independent of the current value ξk. In the case
of the filtering distribution of the neuronal model, one could consider
q(Xk

0:n, X0:n) = p(X0:n). Then the acceptance ratio is equal to

α(Xk
0:n, X0:n) = min

1, π(X0:n)q(X0:n, X
k
0:n)

π(Xk
0:n)q(Xk

0:n, X0:n)


= min

1, p(V0:n|X0:n)p(X0:n)p(Xk
0:n)

p(V0:n|Xk
0:n)p(Xk

0:n)p(X0:n)


= min

1, p(V0:n|X0:n)
p(V0:n|Xk

0:n)



Intuitively, the transition in the MH algorithm is accomplished by
generating an independent trajectory from the distribution of X
(not knowing the V ’s), and then accepting this new trajectory by
comparing the likelihood of this new trajectory comparing the ratio
p(V0:n|X0:n)
p(V0:n|Xk

0:n)). If the new trajectory is more likely given the observations
V , then we accept it with a high probability. The main drawback of
this algorithm is that the entire new trajectory has to be more likely
to be accepted with probability 1. The acceptance rate may thus be
very slow.

• The random walk Metropolis-Hastings algorithm proposes another
option for the choice of the proposal of q(ξk, ·): a local move around
ξ. The idea is that by successive small jumps, the Markov chain
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will actually explore the whole range of the target distribution. The
most natural proposal is the Gaussian random walk proposal

q(Xk
0:n, X0:n) = N (Xk

0:n,Σ)
where Σ is a matrix to be chosen. Thus q(Xk

0:n, X0:n) = q(X0:n, X
k
0:n)

and the acceptance probability is

α(Xk
0:n, X0:n) = min

1, p(V0:n|X0:n)p(X0:n))
p(V0:n|Xk

0:n)p(Xk
0:n)



Depending on which scale Σ is chosen, the Markov chain may be
very slow to converge either because it moves too cautiously (if the
scale is too small) or too widely (if the scale is too large). The main
drawback of this algorithm is that, as for independent MH algorithm,
the the entire new trajectory has to be more likely to be accepted.
The acceptance rate may thus be very slow.

When the distribution of interest π is multivariate, the MH algorithm
may be slow to converge. We may prefer an algorithm allowing to ac-
cept only one component at each iteration, because "improving" one
coordinate is more easy that improving the whole trajectory. This is the
purpose of Gibbs sampling.

[Gibbs sampling] Starting from an initial arbitrary state X0
0:n, update the

current state Xk
0:n to a new trajectory Xk+1

0:n as follows
1. Simulate Xk+1

0 from π0(·|Xk
1:n, V0:n)

2. Simulate Xk+1
1 from π1(·|Xk+1

0 , Xk
2:n, V0:n)

3. . . .
4. Simulate Xk+1

i from πi(·|Xk+1
0:i−1, X

k
i+1:n, V0:n)

5. . . .

where πi is the i-th marginal distribution. Each iteration can be per-
formed using a Metropolis-Hasting algorithm if the marginal distribution
is not explicit.
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Proposition 8. Each of the n individual steps of the Gibbs sampler
admits π as a stationary probability density function.

In the case of the HMM, we have

[MH within Gibbs sampling for HMM] Starting from an initial arbitrary state
X0

0:n, update the current state Xk
0:n to a new trajectory Xk+1

0:n as follows
1. Simulate Xk+1

0 from π0(·|Xk
1 , V0:1) with Metropolis-Hastings

2. . . .
3. SimulateXk+1

i from πi(·|Xk+1
i−1 , X

k
i+1, Vi−1:i+1) with Metropolis-Hastings

4. . . .

Even if this MH within Gibbs sampling has an acceptance rate which
is greater than for the standard MH algorithm, the convergence may be
very slow. Especially, it is very difficult to calibrate the n proposals for
each Metropolis-Hastings algorithm. The mixing of the Markov chain
can be very poor.

An alternative exists, which is specific to the case of time series and
the filtering distribution. This is the particle filter, which is a stochas-
tic version of the filtering. This algorithm is based on the importance
sampling, which is now explained.

5.2.7 Importance sampling

Importance sampling aims at approximating integrals of the form π(f) =∫
f(x)π(x)dx. The Monte-Carlo approach consists in drawing an iid

sample ξ1, . . . , ξN from the probability measure π and then evaluating
the sample mean 1

N

∑N
k=1 f(ξk). This technique is applicable only when

it is possible to sample from the target distribution π.
Importance sampling is based on the idea that it may be more easy to

sample from an instrumental distribution q, and then to weight the
samples using appropriate importance weights. More formally, the idea
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is the following. Assume π is absolutely continuous with respect to any
instrumental distribution q from which sampling is easily feasible. Then

π(f) =
∫
f(x)π(x)dx =

∫
f(x)π(x)

q(x) q(x)dx

So if ξ1, . . . , ξN is an iid sample from q, the importance sampler is an
estimator of π(f):

π̂ISq,N(f) = 1
N

N∑
k=1

f(ξk)π(ξk)
q(ξk)

The strong law of large number implies that π̂q,N(f) converges to π(f)
almost surely as N tends to infinity.

However, the target distribution π or the instrumental distribution q
are generally known only up to a normalizing factor. This is the case
for HMM and the filtering problem. It is possible to use the importance
sampling approach by adopting a self-normalized from of the importance
sampling estimator:

π̃q,N(f) =
∑N
k=1 f(ξk)π(ξk)

q(ξk)∑N
k=1

π(ξk)
q(ξk)

This estimator is the ratio of the sample means of the functions f1 =
fπ/q and f2 = π/q. The strong law of large numbers implies that
1
N

∑N
k=1 f1(ξk) and 1

N

∑N
k=1 f2(ξk) converges almost surely to π(f1) and

q(π/q) = 1. Thus π̃q,N(f) is a consistent estimator of π(f).

An extension to importance sampling is the Sampling Importance
Sampling method, which allows to obtain a sample from the (approxi-
mate) distribution π. SIR is a two-stage procedure in which importance
sampling is followed by an additional random sampling step.

In IS, an iid sample (ξ̃1, . . . , ξ̃N) is drawn from the instrumental dis-
tribution q and associated to normalized importance weights

ωk =
π(ξ̃k)
q(ξ̃k)∑N
j=1

π(ξ̃j)
q(ξ̃j)
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In SIR, the idea is that points ξ̃k for which ωk is large are most likely
under the target distribution π and should be selected with higher prob-
ability when one wants to draw a sample under the (approximate) dis-
tribution π. Therefore, the resampling stage consists of drawing a sam-
ple of size M denoted (ξ1, . . . , ξM) from the intermediate set of points
(ξ̃1, . . . , ξ̃N) with replacement with probability of sampling ξ̃k equal to
the importance weight ωk.

[Sampling Importance Resampling]
1. Sampling: Draw a sample ξ̃1, . . . , ξ̃N from the instrumental distribution
q

2. Weighting: Compute the normalized importance weights

ωk =
π(ξ̃k)
q(ξ̃k)∑N
j=1

π(ξ̃j)
q(ξ̃j)

3. Resampling: Draw M discrete random variables (I1, . . . , IM) with a
multinomial distribution with probability (ω1, . . . , ωM), i.e.

P (I1 = j) = ωj, j = 1, . . . ,M

Set, for j = 1, . . . ,M , ξj = ξ̃Ij .

The resampling step might be seen as a means to transform the weighted
importance sampling estimate π̂ISq,N(f) into an unweighted sample aver-
age. If N j is the number of times the element ξ̃Ij is resampled, we have

π̂SIRq,M = 1
M

M∑
j=1

f(ξj) =
N∑
j=1

N j

N
f(ξ̃j)

It is easily seen that π̂SIRq,M is, conditionally on (ξ̃1, . . . , ξ̃N), equal to
the importance sampling estimator π̂ISq,N(f)

E(π̂SIRq,N (f)|ξ̃1, . . . , ξ̃N) = π̂ISq,N(f)

As a consequence, the SIR estimator is an unbiased estimator of π(f).
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But for both the IS and SIR estimators, the normalizing constants
has to be known. Moreover the proposal q for the whole trajectory is
difficult to choose. We now present the case of filtering.

5.2.8 Filtering problem

We consider the HMM defined by the neuronal model. We want to define
the filtering and smoothing distribution. We have

π0|0(f) = E(f(X0)|V0) =
∫
f(x0)p(y0|x0)p(x0)dx0∫
p(y0|x0)p(x0)dx0

Then recursively,

πnf = =
∫
p(X0)

∏n
i=1 p∆(Vi, Xi|Vi−1, Xi−1)f(Un)dX0:n∫

p(X0)
∏n
i=1 p∆(Vi, Xi|Vi−1, Xi−1)dX0:n

. (5.10)

We introduce for i = 1, . . . , n the kernels Hi from R into itself by

Hif(x) =
∫

p∆(Vi, y|Vi−1, x)f(y)dy. (5.11)

Then πn can be expressed recursively by

πnf = πn−1Hnf

πn−1Hn1
(5.12)

Note that the denominator of (5.18) is µH1 · · ·Hn1 = p∆(V0:n), which
is different from 0 since it has support the real line. Thus, the filtering
problem is well-posed.

5.2.9 Particle Filter

We call particle filter or sequential Monte Carlo (SMC) any stochastic
method which approximates a filter distribution.

The SMC algorithm provides a set of K particles (X(k)
0:n)k=1...K and

weights (W (k)
0:n )k=1...K approximating the conditional smoothing distribu-

tion p∆(X0:n|V0:n)dX0:n (see Doucet et al., 2001). The SMC method
relies on proposal distributions q(Xi|Vi, Vi−1, Xi−1) to sample what we
call particles from these distributions. We write V0:i = (V0, . . . , Vi) and
likewise for X1:i.
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[SMC algorithm]

• At time i = 0: ∀ k = 1, . . . , K

1. sample X(k)
0 from p(X0|V0)

2. compute and normalize the weights: w0

(
X

(k)
0

)
= p

(
V0, X

(k)
0

)
,

W0

(
X

(k)
0

)
= w0(X(k)

0 )∑K
k=1 w0(X(k)

0 )
• At time i = 1, . . . , n: ∀ k = 1, . . . , K

1. Sample the indices A
(k)
i−1 ∼ r(·|Wi−1(X1:i−1)) and set X

′(k)
1:i−1 =

X
(A(k)

i−1)
1:i−1

2. sample X(k)
i ∼ q

(
·|X

′(k)
i−1

)
and set X(k)

0:i = (X
′(k)
1:i−1, X

(k)
i )

3. compute and normalize the weights Wi(X(k)
0:i ) = wi(X(k)

0:i )∑K
k=1 wi(X(k)

0:i )
with

wi
(
X

(k)
0:i

)
= p∆(Vi,X(k)

i |V0:i−1,X
(k)
0:i−1)

q
(
X

(k)
i |X

′(k)
i−1

) = p∆(Vi|V0:i−1,X
(k)
0:i−1)p∆(X(k)

i |X
(k)
i−1)

q
(
X

(k)
i |X

′(k)
i−1

)

Thus the SMC is a Sampling Importance Resampling approach, with
iterative simulation along time. It can be proved that the sample (X(k)

n )k≥0
is approximately distributed with p∆(Xn|V0:n).

The choice of the kernel q is very important to allow a "quick" con-
vergence of the algorithm. The transition density, also called the prior
distribution p(Xi|Xi−1), is a natural proposal. However, the transition
density may not be optimal, if the observations are unlikely with the
hidden states. The proposal should be close to the optimal distribution
p(Xi|Xi−1, Vi−1).

The resampling step allows to avoid the problem of weight degeneracy.
If there are too many ineffective particles, the particle approximation
becomes both computationally and statistically inefficient: most of the
computing effort is put on updating particles and weights that do not
contribute significantly to the estimator.
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The resampling allows to reduce the degeneracy of the importance
weights. The trajectories with small importance weights are eliminated,
whereas those with large importance weights are duplicated.

5.2.10 Deviation inequality

For a bounded Borel function f , denote ΨK
n f = ∑K

k=1 f(X(k)
n )Wn,θ(X(k)

0:n),
the conditional expectation of f under the empirical measure ΨK

n,θ ob-
tained by the SMC algorithm for a given value of θ. We have:
Proposition 9. Under assumption (SMC3), for any ε > 0, and for
any bounded Borel function f on R, there exist constants C1 and C2,
independent of θ, such that

P
(∣∣∣ΨK

n,θf − πn,θf
∣∣∣ ≥ ε

)
≤ C1 exp

−K ε2

C2‖f‖2

 (5.13)

where ‖f‖ is the sup-norm of f .
The proof is provided in Appendix ??. A similar result can be obtained

with respect to the exact smoothing distribution of the exact diffusion
model, under assumptions on the number of particles and the step size
of the Euler approximation.

5.2.11 SAEM algorithm

When the conditional expectation of the EM algorithm has no closed
form, we simulate a sample from the (approximated) distributionX0:n|V0:n
and then approximate the expectation by an empirical mean (Importance
sampling estimator or MCMC).

This is the idea of the Stochastic Approximation EM algorithm (SAEM)
replacing the E-step by a stochastic approximation of Qm(θ). The E-step
is then divided into a simulation step (S-step) of the non-observed data
(X(m)

0:n ) with the conditional density p∆(X0:n |V0:n; θ̂m−1) and a stochastic
approximation step (SA-step) of E∆

[
S(V0:n, X0:n)|V0:n; θ̂m−1

]
with a se-

quence of positive numbers (am)m∈N decreasing to zero. We write sm for
the approximation of this expectation. Iterations of the SAEM algorithm
are written as follows:
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[SAEM algorithm]
• Iteration 0: initialization of θ̂0 and set s0 = 0.
• Iteration m ≥ 1:

S-Step: simulation of the non-observed data (X(m)
0:n ) targeting the distribu-

tion p∆(X0:n|V0:n; θ̂m−1)dX0:n.
SA-Step: update sm−1 using the stochastic approximation:

sm = sm−1 + am−1

[
S(V0:n, X

(m)
0:n )− sm−1

]
(5.14)

M-Step: update of θ̂m by θ̂m = arg max
θ∈Θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

Convergence of SAEM We introduce a set of convergence assumptions
which are the classic ones for the SAEM algorithm (Delyon et al., 1999).

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on
Θ.

(M3) The function s̄ : Θ −→ S defined by s̄(θ) = ∫
S(v, x)p∆(x|v; θ)dv dx

is continuously differentiable on Θ.

(M4) The function `∆(θ) = log p∆(v, x, θ) is continuously differentiable on
Θ and ∂θ

∫
p∆(v, x; θ)dv dx = ∫

∂θp∆(v, x; θ)dv dx.

(M5) Define L : S ×Θ→ R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a
function θ̂ : S → Θ such that ∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation
(am)m≥1 is such that ∑m am =∞ and ∑

m a
2
m <∞.

(SAEM2) `∆ : Θ→ R and θ̂ : S → Θ are d times differentiable, where d is the
dimension of S(v, x).

(SAEM3) For all θ ∈ Θ, ∫ ||S(v, x)||2 p∆(x|v; θ)dx <∞ and the function Γ(θ) =
Covθ(S(·, X0:n)) is continuous, where the covariance is under the
conditional distribution p∆(X0:n|V0:n; θ).
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(SAEM4) Let {Fm} be the increasing family of σ-algebras generated by the
random variables s0, X

(1)
0:n, X

(2)
0:n, . . . , X

(m)
0:n . For any positive Borel

function f , E∆(f(X(m+1)
0:n )|Fm) = ∫

f(x)p∆(x|v, θ̂m)dx.
Assumptions (M1)-(M5) ensure the convergence of the EM algorithm
when the E-step is exact (Delyon et al., 1999). Assumptions (M1)-(M5)
and (SAEM1)-(SAEM4) together with the additional assumption that
(sm)m≥0 takes its values in a compact subset of S ensure the convergence
of the SAEM estimates to a stationary point of the observed likelihood
p∆(V0:n; θ) when the simulation step is exact (Delyon et al., 1999).
Theorem 4. Assume that (M1)-(M5), (SAEM1)-(SAEM3) hold. Then,
with probability 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈ Θ, ∂θ`∆(θ) = 0}
is the set of stationary points of the log-likelihood `∆(θ) = log p∆(V0:n; θ).

We have seen two versions to realize the simulation step: either by
MCMC or by SMC. The convergence proof is not the same.

SAEM and MCMC When the simulation of the non-observed vector X0:n
cannot be directly performed, Kuhn and Lavielle Kuhn and Lavielle
(2005) propose to combine this algorithm with a Markov Chain Monte-
Carlo (MCMC) procedure. The convergence of the SAEM-MCMC algo-
rithm is ensured under the following additional assumption:

Assumption (MCMC1):
1. For any compact subset V of Θ, there exists a real constant L such

that for any (θ, θ′) in V 2

sup
{X0:n,X ′0:n}∈E

|Πθ (X ′0:n|X0:n)− Πθ′ (X ′0:n|X0:n)| ≤ L‖θ − θ′‖.

2. The transition probability Πθ supplies an uniformly ergodic chain
whose invariant probability is the conditional distribution p(X0:n|V0:n; θ),
i.e.
∃Kθ ∈ R+, ∃ρθ ∈]0, 1[ | ∀` ∈ N ‖Π`

θ(·|X0:n)−p(·, ·|V0:n; θ)‖TV ≤ Cθρ
`
θ,

where ‖ · ‖TV is the total variation norm. Furthermore,
C = sup

θ∈Θ
Cθ <∞ and ρ = sup

θ∈Θ
ρθ < 1.
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3. Function S is bound on E .

Theorem 5. Assume that (M1)-(M5), (SAEM1)-(SAEM3) and (MCMC1)
hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈
Θ, ∂θ`∆(θ) = 0} is the set of stationary points of the log-likelihood `∆(θ) =
log p∆(V0:n; θ).

SAEM and SMC When we combine the SAEM algorithm with SMC, we
need some additional assumptions because the simulation step is not
exact. We have three additional assumptions on the SMC algorithm to
bound the error induced by this algorithm and prove the convergence of
the SAEM-SMC algorithm.

(SMC1) The number of particles K used at each iteration of the SAEM
algorithm varies along the iteration: there exists a function g(m)→
∞ when m→∞ such that K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.

(SMC3) The functions p∆(Vi|Xi, Xi−1, Xi−1; θ) are bounded uniformly in θ.

Theorem 6. Assume that (M1)-(M5), (SAEM1)-(SAEM3) and (SMC1)-
(SMC3) hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where
L = {θ ∈ Θ, ∂θ`∆(θ) = 0} is the set of stationary points of the log-
likelihood `∆(θ) = log p∆(V0:n; θ).
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5.3 Incomplete observations with non autonomous hidden com-
ponents

We consider the elliptic Morris-Lecar model

dV (t) = − (gfastm∞(t) (V (t)− Vfast) + gslowU(t)(V (t)− Vslow) + gL(V (t)− VL) + I(t)) dt+ γdB̃(t)
dU(t) = (α(V (t))(1− U(t))− β(V (t))U(t)) dt+ σ(V (t), U(t))dB(t)

where B̃(t) and B(t) are two independent Brownian motions.
The aim is to estimate θ by maximum likelihood. However, this likeli-

hood is intractable, as the transition density of model (??) is not explicit.
Let ∆ denote the step size between two observation times, which we for
simplicity assume does not depend on i. The extension to unequally
spaced observation times is straightforward. The Euler-Maruyama ap-
proximation of model (??) leads to a discretized model defined as follows

Vi+1 = Vi + ∆f(Vi, Ui) +
√

∆ γ η̃i, (5.15)
Ui+1 = Ui + ∆b(Vi, Ui) +

√
∆σ(Vi, Ui)ηi,

where (η̃i) and (ηi) are independent centered Gaussian variables. To
ease readability the same notation (Vi, Ui) is used for the original and
the approximated processes. This should not lead to confusion, as long
as the transition densities are distinguished, as done below.

5.3.1 Property of the observation model

The observation model is a degenerate HMM. Let us recall the definition
proposed by Cappé et al. (2005): A HMM with not countable state
space is defined as a bivariate Markov chain (Xi, Yi) with only partial
observations Yi, whose transition kernel has a special structure: both the
joint process (Xi, Yi) and the marginal hidden chain (Xi) are Markovian.

In our model, (Ui) is not Markovian, only (Vi, Ui) is Markovian. So set
Xi = (Vi, Ui), with Markov kernelR(Xi−1, dXi) = p∆(dVi, dUi|Vi−1, Xi−1),
the transition density of model (5.15), and Yi = X

(1)
i , the first coordi-

nate of Xi with transition kernel F (X, dY ) = 1Y=X(1). Here, 1x is the
Dirac measure in x. Thus, the kernel F is zero almost everywhere and
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the HMM is degenerate. This leads to an intrinsic degeneracy of the
particle filter used in the standard HMM toolbox, as explained below.

Therefore we consider the observation model as a bivariate Markov
chain (Vi, Ui) with only partial observations Vi whose hidden coordinate
Ui is not Markovian. It is not a HMM but a general dynamic model as
considered by Andrieu et al. (2001). The hidden process Ui is distributed
as

U0 ∼ µ(dU0), Ui|(U0:i−1, V0:i−1) ∼ K(dUi|U0:i−1, V0:i−1)
for some conditional distribution function K and the observed process
Vi is distributed as

Vi|(U0:i, V0:i−1) ∼ G(dVi|U0:i, V0:i−1)

for some distribution function G. Given the Markovian structure of
the pair (Vi, Ui), we have K(dUi|U0:i−1, V0:i−1) = K(dUi|Xi−1, Vi−1) and
G(dVi| U0:i, V0:i−1) = G(dVi|Ui−1:i, Vi−1). To simplify, we use the same
notation for random variables and their realizations and assume that
G(dVi|U0:i, V0:i−1) = G(Vi|U0:i, V0:i−1)dVi.

5.3.2 Likelihood function

We want to estimate the parameter θ by maximum likelihood of the
approximate model, with likelihood

p∆(V0:n; θ) =
∫
p(V0, U0; θ)

n∏
i=1

p∆(Vi, Ui|Vi−1, Ui−1; θ)dU0:n. (5.16)

It corresponds to a pseudo-likelihood for the exact diffusion. The mul-
tiple integrals of equation (5.16) are difficult to handle and it is not
possible to maximize the pseudo-likelihood directly.

To maximize the likelihood of the complete data vector (V0:n, U0:n),
we propose to use a stochastic version of the EM algorithm, namely the
SAEM algorithm (Delyon et al., 1999). Simulation under the smoothing
distribution p∆(U0:n |V0:n; θ)dU0:n is performed with a SMC algorithm,
also known as Particle Filtering. We have adapted this algorithm to
handle a coupled two-dimensional SDE, i.e. the unobserved coordinate
is non-autonomous and non-Markovian.
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5.3.3 The filtering problem and the SMC algorithm

For any bounded Borel function f : R 7→ R, we denote πn,θf = E∆ (f(Un)|V0:n; θ),
the conditional expectation under the exact smoothing distribution p∆(U0:n|V0:n; θ)
of the approximate model. The aim is to approximate this distribution
for a fixed value of θ. When included in the stochastic EM algorithm,
this value will be the current value θ̂m at the given iteration. For nota-
tional simplicity, θ is omitted in the rest of this Section.

We now argue why the HMM point of view is ill-posed for the filtering
problem. Considering the model as a HMM, Xi = (Vi, Ui) is the hidden
Markov chain and Yi = X

(1)
i . But then the filtering problem πnf is the ra-

tio of ∫
µ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn)f(Xn)

and ∫ µ(dU0)R(X0, dX1)F (X0;Y1) · · ·R(Xn−1, dXn)F (Xn−1;Yn). Since
F (Xn−1;Yn) = 1

Yn=X(1)
n−1

and the state space is continuous, the denomi-
nator is zero almost surely and the filtering problem is ill-posed.

Now consider the model in a more general framework with the hidden
state Ui not Markovian, and introduce for i = 1, . . . , n the kernels Hi
from R into itself by

Hif(u) =
∫

K(dz|Vi−1, u)G(Vi|u, Vi−1, z)f(z)dz =
∫

p∆(Vi, y|Vi−1, u)f(z)dz. (5.17)

Then πn can be expressed recursively by

πnf = πn−1Hnf

πn−1Hn1
=

∫
µ(U0)

∏n
i=1 p∆(Vi, Ui|Vi−1, Ui−1)f(Un)dU0:n∫

µ(U0)
∏n
i=1 p∆(Vi, Ui|Vi−1, Ui−1)dU0:n

.(5.18)

Note that the denominator of (5.18) is µH1 · · ·Hn1 = p∆(V0:n), which
is different from 0 since it has support the real line. Thus, the filtering
problem is well-posed.

The kernels Hi are extensions of the kernels considered by Del Moral
et al. (2001) in the context of two-dimensional SDEs with hidden coor-
dinate Ut autonomous (and thus Markovian). We do not extend their
particle filter since it is based on simulation of both Vi and Ui with
transition kernel p∆(Vi, Ui|Vi−1, Ui−1). They avoid the degeneracy of the
weights by introducing an instrumental function ψ and the weights are
computed as ψ(V (k)

i −Vi). The choice of this instrumental function may
influence the numerical properties of the filter. Therefore, we adopt the
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general filter proposed by Andrieu et al. (2001) for more general dynamic
system, that we recall here.

The SMC is the following.

[SMC algorithm]

• At time i = 0: ∀ k = 1, . . . , K

1. sample U (k)
0 from p(U0|V0)

2. compute and normalize the weights: w0 (X0:k) = p (V0, X0:k), W0 (X0:k) =
w0(X0:k)∑K
k=1 w0(X0:k)

• At time i = 1, . . . , n: ∀ k = 1, . . . , K

1. Sample the indices A
(k)
i−1 ∼ r(·|Wi−1(U0:i−1)) and set U

′(k)
0:i−1 =

U
(A(k)

i−1)
0:i−1

2. sample U (k)
i ∼ q

(
·|Vi−1:i, U

′(k)
i−1

)
and set U (k)

0:i = (U
′(k)
0:i−1, U

(k)
i )

3. compute and normalize the weights Wi(U (k)
0:i ) = wi(U (k)

0:i )∑K
k=1 wi(U (k)

0:i )
with

wi
(
U

(k)
0:i

)
= p∆(V0:i,U

(k)
0:i )

p∆

(
V0:i−1,U

′(k)
0:i−1

)
q
(
U

(k)
i |Vi−1:i,U

′(k)
0:i−1

)

Finally, the SMC algorithm provides an empirical measure ΨK
n =∑K

k=1Wn(U (k)
0:n)1

U
(k)
0:n

which is an approximation to the smoothing distribu-
tion p∆(U0:n|V0:n)dU0:n. A draw from this distribution can be obtained by
sampling an index k from a multinomial distribution with probabilities
Wn and setting the draw U0:n equal to U0:n = X

(k)
0:n.

The variable A
(k)
i−1 plays an important role to discard the samples

with small weights and multiply those with large weights (Gordon et al.,
1993). It generates a number of offspring N (`)

i−1, ` = 1, . . . , K, such that∑K
`=1N

(`)
i−1 = K and E(N (`)

i−1) = KWi−1(U (l)
0:i−1). Many schemes r have

been presented in the literature, including multinomial sampling (Gor-
don et al., 1993), residual sampling (Liu and Chen, 1998) or stratified
resampling (Doucet et al., 2000). They differ in terms of var(N (`)

i−1) (see
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Doucet et al., 2000). The key property that we need in order to prove
the deviation inequality is that E(1

A
(k)
i−1=`) = Wi−1(U (l)

0:i−1).

Since our model is not a HMM, the weights wi
(
U

(k)
0:i

)
cannot be writ-

ten in terms of a Markov transition kernel of the hidden path as is usu-
ally done. It follows that the proposal q, which is crucial to ensure good
convergence properties, has to depend on Vi. The first classical choice
of q is q(Ui|Vi−1:i, Ui−1) = p∆(Ui|Vi−1, Ui−1), i.e. the transition density.
In this case, the weight reduces to wi

(
U

(k)
0:i

)
= p∆(Vi|Vi−1, U

(k)
0:i ). A

second choice for the proposal is q(Ui|Vi−1:i, Ui−1) = p∆(Ui|Vi−1:i, Ui−1),
i.e. the conditional distribution. In this case, the weight reduces to
wi

(
U

(k)
0:i

)
= p∆(Vi|Vi−1, U

(k)
0:i−1). Transition densities and conditional dis-

tributions are detailed in Appendix ??. When the two Brownian motions
are independent, as we assume, the two choices are equivalent.

5.3.4 Deviation inequality

In the literature, deviation inequalities for SMC algorithms only appear
for HMM. To our knowledge, this is the first non-asymptotic result pro-
posed for a SMC applied to a non-Markovian hidden path. The only
result of this type with SDEs has been obtained by Del Moral et al.
(2001), with autonomous second coordinate. Here, we generalize their
deviation inequality to a non-autonomous hidden path.

For a bounded Borel function f , denote ΨK
n f = ∑K

k=1 f(U (k)
n )Wn,θ(U (k)

0:n),
the conditional expectation of f under the empirical measure ΨK

n,θ ob-
tained by the SMC algorithm for a given value of θ. We have:
Proposition 10. Under assumption (SMC3), for any ε > 0, and for
any bounded Borel function f on R, there exist constants C1 and C2,
independent of θ, such that

P
(∣∣∣ΨK

n,θf − πn,θf
∣∣∣ ≥ ε

)
≤ C1 exp

−K ε2

C2‖f‖2

 (5.19)

where ‖f‖ is the sup-norm of f .
The proof is provided in Appendix ??. A similar result can be obtained

with respect to the exact smoothing distribution of the exact diffusion
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model, under assumptions on the number of particles and the step size
of the Euler approximation.

5.3.5 Estimation method

We now detail the SAEM algorithm.
The approximate Morris-Lecar model (5.15) satisfies the exponential

family assumption (M1) when the scaling parameters V1, V2, V3 and V4
are known. The sufficient statistics of the approximate model (5.15) are
the following. Consider the n× 6-matrix

X =
(
−V0:(n−1),−m∞(V0:(n−1))V0:(n−1),−U0:(n−1)V0:(n−1), U0:(n−1),1,m∞(V0:(n−1))

)
where 1 is the vector of 1’s of size n. Then the vector

S1(V0:(n−1), U0:(n−1)) = (X ′X)−1 X ′ (V1:n − V0:(n−1))

is the sufficient statistic vector corresponding to the parameters ν1(θ) =
(gL, gCa, gK , gKVK , gLVL + I, gCaVCa), where ′ denotes transposition.

The sufficient statistics corresponding to ν2(θ) = 1/γ2 are
n∑
i=1

(Vi − Vi−1)Ui−1,
n∑
i=1

U 2
i−1,

n∑
i=1

(Vi − Vi−1)Vi−1m∞(Vi−1),

n∑
i=1

(Vi − Vi−1)Ui−1Vi−1,
n∑
i=1

U 2
i−1V

2
i−1.

The sufficient statistics corresponding to φ is also explicit but more
complex and not detailed here.

We write sm for the approximation of the expectation E∆
[
S(V0:n, U0:n)|V0:n; θ̂m−1

]
.

At the S-step, the simulation under the smoothing distribution is done
by SMC. We call this algorithm the SAEM-SMC algorithm. Iterations
of the SAEM-SMC algorithm are written as follows:

[SAEM-SMC algorithm]
• Iteration 0: initialization of θ̂0 and set s0 = 0.
• Iteration m ≥ 1:

S-Step: simulation of the non-observed data (U (m)
0:n ) with SMC targeting the

distribution p∆(U0:n|V0:n; θ̂m−1)dU0:n.
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SA-Step: update sm−1 using the stochastic approximation:

sm = sm−1 + am−1

[
S(V0:n, U

(m)
0:n )− sm−1

]
(5.20)

M-Step: update of θ̂m by θ̂m = arg max
θ∈Θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

5.3.6 Convergence of the SAEM-SMC algorithm

The SAEM algorithm we propose in this paper is based on an approxi-
mate simulation step performed with an SMC algorithm. We prove that
even if this simulation is not exact, the SAEM algorithm still converges
towards the maximum of the likelihood of the approximated diffusion
(5.15). This is true because the SMC algorithm has good convergence
properties.

Let us be more precise. We introduce a set of convergence assumptions
which are the classic ones for the SAEM algorithm (Delyon et al., 1999).

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on
Θ.

(M3) The function s̄ : Θ −→ S defined by s̄(θ) = ∫
S(v, u)p∆(u|v; θ)dv du

is continuously differentiable on Θ.
(M4) The function `∆(θ) = log p∆(v, u, θ) is continuously differentiable on

Θ and ∂θ
∫
p∆(v, u; θ)dv du = ∫

∂θp∆(v, u; θ)dv du.
(M5) Define L : S ×Θ→ R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a

function θ̂ : S → Θ such that ∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).
(SAEM1) The positive decreasing sequence of the stochastic approximation

(am)m≥1 is such that ∑m am =∞ and ∑
m a

2
m <∞.

(SAEM2) `∆ : Θ→ R and θ̂ : S → Θ are d times differentiable, where d is the
dimension of S(v, u).

(SAEM3) For all θ ∈ Θ, ∫ ||S(v, u)||2 p∆(u|v; θ)du < ∞ and the function
Γ(θ) = Covθ(S(·, U0:n)) is continuous, where the covariance is un-
der the conditional distribution p∆(U0:n|V0:n; θ).
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(SAEM4) Let {Fm} be the increasing family of σ-algebras generated by the
random variables s0, U

(1)
0:n, U

(2)
0:n, . . . , U

(m)
0:n . For any positive Borel

function f , E∆(f(U (m+1)
0:n )|Fm) = ∫

f(u)p∆(u|v, θ̂m)du.

Assumptions (M1)-(M5) ensure the convergence of the EM algorithm
when the E-step is exact (Delyon et al., 1999). Assumptions (M1)-(M5)
and (SAEM1)-(SAEM4) together with the additional assumption that
(sm)m≥0 takes its values in a compact subset of S ensure the convergence
of the SAEM estimates to a stationary point of the observed likelihood
p∆(V0:n; θ) when the simulation step is exact (Delyon et al., 1999).

Here the simulation step is not exact and we have three additional
assumptions on the SMC algorithm to bound the error induced by this
algorithm and prove the convergence of the SAEM-SMC algorithm.

(SMC1) The number of particles K used at each iteration of the SAEM
algorithm varies along the iteration: there exists a function g(m)→
∞ when m→∞ such that K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.

(SMC3) The functions p∆(Vi|Ui, Vi−1, Ui−1; θ) are bounded uniformly in θ.

Theorem 7. Assume that (M1)-(M5), (SAEM1)-(SAEM3), and (SMC1)-
(SMC3) hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where
L = {θ ∈ Θ, ∂θ`∆(θ) = 0} is the set of stationary points of the log-
likelihood `∆(θ) = log p∆(V0:n; θ).

Theorem 7 is proved in Appendix ??. Note that assumption (SAEM4)
is not needed thanks to the conditional independence of the particles
generated by the SMC algorithm, as detailed in the proof. Similarly, the
additional assumption that (sm)m≥0 takes its values in a compact subset
of S is not needed, as it is directly satisfied under assumption (SMC2).

We deduce that the SAEM algorithm converges to a (local) maximum
of the likelihood under standard additional assumptions (LOC1)-(LOC3)
proposed by Delyon et al. (1999) on the regularity of the log-likelihood
`∆(V0:n; θ) that we do not recall here.
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Corollary 1. Under the assumptions of Theorem 7 and additional as-
sumptions (LOC1)-(LOC3), the sequence θ̂m converges with probability
1 to a (local) maximum of the likelihood p∆(V0:n; θ).

The classical assumptions (M1)-(M5) are usually satisfied. Assump-
tion (SAEM1) is easily satisfied by choosing properly the sequence (am).
Assumptions (SAEM2) and (SAEM3) depend on the regularity of the
model. They are satisfied for the approximate Morris-Lecar model.

In practice, the SAEM algorithm is implemented with an increas-
ing number equal to the iteration number, which satisfies Assumption
(SMC1). Assumption (SMC2) is satisfied for the approximate Morris-
Lecar model because the variables U are bounded between 0 and 1 and
the variables V are fixed at their observed values. This would not have
been the case with the filter of Del Moral et al. (2001), which resimulates
the variables V at each iteration. Assumption (SMC3) is satisfied if we
require that γ is strictly bounded away from zero; γ ≥ ε > 0.
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5.4 Hypoelliptic SDE
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