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Coupling stochastic EM and Approximate Bayesian
Computation for parameter inference in state-space
models

Umberto Picchini · Adeline Samson

Abstract We study the class of state-space models (or hidden Markov mod-
els) and perform maximum likelihood inference on the model parameters. We
consider a stochastic approximation expectation-maximization (SAEM) algo-
rithm to maximize the likelihood function with the novelty of using approxi-
mate Bayesian computation (ABC) within SAEM. The task is to provide each
iteration of SAEM with a filtered state of the system and this is achieved us-
ing ABC-SMC, that is we used an approximate sequential Monte Carlo (SMC)
sampler for the hidden state. Three simulation studies are presented, first a
nonlinear Gaussian state-space model then a state-space model having dynam-
ics expressed by a stochastic differential equation, finally a stochastic volatility
model. In our examples, ten iterations of our SAEM-ABC-SMC strategy were
enough to return sensible parameter estimates. Comparisons with results us-
ing SAEM coupled with a standard, non-ABC, SMC sampler show that the
ABC algorithm can be calibrated to return accurate solutions.

Keywords hidden Markov model · maximum likelihood · SAEM · sequential
Monte Carlo · stochastic differential equation

1 Introduction

State-space models, also known as Hidden Markov models, see Cappé et al.
[2005], are widely used in many fields, such as biology, chemistry, ecology,
etc. Let us now introduce some notation. Consider an observable, discrete-
time stochastic process {Yt}t≥t0 , Yt ∈ Y ⊆ Rdy and a latent and unob-
served continuous-time stochastic process {Xt}t≥t0 , Xt ∈ X ⊆ Rdx . Process
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Xt ∼ p(xt|xt−1,θx) is assumed Markov with transition densities p(·). Both
processes {Xt} and {Yt} depend on their own (assumed unknown) vector-
parameters θx and θy respectively. We think at {Yt} as a measurement-error-
corrupted version of {Xt} and assume that observations for {Yt} are condi-
tionally independent given {Xt}. Our state-space model can be summarised
as {

Yt ∼ f(yt|Xt,θy), t ≥ t0
Xt ∼ p(xt|xt−1,θx).

(1)

Typically f(·) is considered a known density (or probability mass) function
set by the modeller, however this is not always the case, as discussed later on.
Regarding p(·), this is typically unknown except for very simple toy models.

Goal of our work is to estimate the parameters (θx,θy) using observations
Y1:n = (Y1, ...,Yn) from {Yt}t≥t0 collected at discrete times {t1, ..., tn}. For
ease of notation we refer to the vector θ := (θx,θy) as the object of our
inference.

Bayesian estimation for state-space models has been widely developed.
There the goal is to derive analytically the posterior distribution π(θ|Y1:n)
or, most frequently, implement an algorithm for sampling draws from the pos-
terior. Sampling procedures are often carried out using Markov chain Monte
Carlo (MCMC) or Sequential Monte Carlo (SMC) embedded in MCMC pro-
cedures [Andrieu et al., 2010].

In this work we instead aim at maximum likelihood estimation of θ. Several
methods have been proposed in the literature, usually based on the well-known
EM algorithm [Dempster et al., 1977]. The EM algorithm computes the con-
ditional expectation of the complete-likelihood for the pair ({Yt}, {Xt}) and
then produces a (local) maximizer for the likelihood function based on the
actual observations Y1:n. One of the problems is to compute the conditional
expectation of the state {Xt} given the observations Y1:n. This conditional ex-
pectation can be computed exactly with the Kalman filter when the state-space
is linear and Gaussian [Cappé et al., 2005]. Otherwise, it has to be approxi-
mated. In this work we focus on a stochastic approximation that leads to a
stochastic version of the EM algorithm, namely the Stochastic Approximation
EM (SAEM) [Delyon et al., 1999]. The problem is to generate, conditionally
on the current value of θ during the EM maximization, an appropriate “pro-
posal” for the state {Xt}. Sequential Monte Carlo (SMC) algorithms [Doucet
et al., 2001] have already been coupled to stochastic EM algorithms (see e.g.
Huys et al. [2006], Huys and Paninski [2009], Lindsten [2013], Ditlevsen and
Samson [2014] and references therein). The simplest and most popular SMC
algorithm, the bootstrap filter, is easy to implement though much literature
has been devoted to propose improvements over such basic filter (Cappe et al.
[2007], Jacob [2015]). However here we would like to consider options which
are not overspecialised and not requiring expert tuning.

In order to select a path {Xt} to feed SAEM with, we follow a SMC ap-
proach based on approximate Bayesian computation (ABC) and specifically
we use the ABC-SMC method for state-estimation proposed in Jasra et al.
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[2012]. We illustrate our SAEM-ABC-SMC approach for (approximate) maxi-
mum likelihood estimation of θ using three case studies, a nonlinear Gaussian
state-space model, a more complex state-space model based on stochastic dif-
ferential equations and a stochastic volatility model. As a side-product of the
method introduced, we also retrieve the filtered state {Xt} at the parameters
maximum likelihood estimate. In our examples, when starting from unlikely
parameter values SAEM-ABC-SMC shows rapid convergence to the true pa-
rameter values after a few iterations (about ten), hence it can be considered as
a viable alternative to pure SMC techniques or expensive algorithms for full
Bayesian inference.

The paper is structured as follows: in section 2 we introduce the stan-
dard SAEM algorithm and basic notions of ABC. In section 3 we propose
a new method for maximum likelihood estimation by integrating an ABC-
SMC algorithm within SAEM. Section 4 shows simulation results and section
5 summarize conclusions.

2 The complete likelihood and stochastic approximation EM

Recall that Y1:n = (Y1, ...,Yn) denotes the available data collected at times
(t1, ..., tn) and denote with X1:n = (X1, ...,Xn) the corresponding unobserved
states. We additionally setX0:n = (X0,X0:n) for the vector including an initial
(fixed or random) state X0, that is X1 is generated as X1 ∼ p(x1|x0). When
the transition densities p(xj |xj−1) are available in closed form (j = 1, ..., n),
the likelihood function for θ can be written as (here we have assumed a random
initial state with density p(X0))

p(Y1:n;θ) =

∫
pY,X(Y1:n,X0:n ;θ) dX0:n =

∫
pY|X(Y1:n|X0:n ;θ)pX(X0:n;θ) dX0:n

=

∫
p(X0)

{ n∏
j=1

p(Yj |Xj ;θ)p(Xj |Xj−1;θ)

}
dX0 · · · dXn (2)

where pY,X is the “complete data likelihood”, p(Yj |Xj) the conditional density
ofYj and pX(X0:n;θ) the joint density ofX0:n. The last equality in (2) exploits
the notion of conditional independence of observations given latent states and
the Markovian property of {Xt}. In general the likelihood (2) is not explicitly
known either because the integral is multidimensional and because typically
expressions for transition densities are not available.

In addition, when an exact simulator for the solution of the dynamical
process associated with the Markov process {Xt} is unavailable, hence it is
not possible to sample from p(Xi|Xi−1;θ), numerical discretization methods
are required. Without loss of generality, say that we have equispaced sam-
pling times such that tj = tj−1 + ∆, with ∆ > 0. Now introduce a dis-
cretization for the interval [t1, tn] given by {τ1, τh, ..., τMh, ..., τnMh} where
h = ∆/R and R ≥ 1. We take τ1 = t1, τnMh = tn and therefore τi ∈
{t1, ...., tn} for i = 1,Mh, 2Mh, ..., nMh. We denote with N the number
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of elements in the discretisation {τ1, τh, ..., τMh, ..., τnMh} and with X1:N =
(Xτ1 , . . . ,XτN ) the corresponding values of {Xt} obtained when using a given
numerical/approximated method of choice. Then the likelihood function be-
comes

p(Y0:n;θ) =

∫
pY,X(Y0:n,X0:N ;θ) dX0:N =

∫
pY|X(Y0:n|X0:N ;θ)pX(X0:N ;θ) dX0:N

=

∫ { n∏
j=0

p(Yj |Xj ;θ)

}
p(X0)

N∏
i=1

p(Xi|Xi−1;θ)dX0 · · · dXN ,

where the product in j is over the Xtj and the product in i is over the Xτi .

2.1 The standard SAEM algorithm

The EM algorithm introduced by Dempster et al. [1977] is a classical approach
to estimate parameters of models with non-observed or incomplete data. Let us
briefly cover the EM principle. The complete data of the model is (Y0:n,X0:N ),
where X0:N ≡ X0:n if numerical discretization is not required, and for ease of
writing we denote this as (Y,X) in the remaining of this section. The EM al-
gorithm maximizes the function Q(θ|θ′) = E(Lc(Y,X;θ)|Y;θ′) in two steps,
where Lc(Y,X;θ) := log pY,X is the log-likelihood of the complete data and
E is the conditional expectation under the conditional distribution pX|Y(·;θ′).

At the k-th iteration, the E-step is the evaluation of Qk(θ) = Q(θ | θ̂
(k−1)

),

whereas the M-step updates θ̂
(k−1)

by maximizing Qk(θ). For cases in which
the E-step has no analytic form, Delyon et al. [1999] introduce a stochastic
version (SAEM) of the EM algorithm which evaluates the integral Qk(θ) by
a stochastic approximation procedure. The authors prove the convergence of
this algorithm under general conditions if Lc(Y,X;θ) belongs to the regular
exponential family

Lc(Y,X;θ) = −Λ(θ) + 〈Sc(Y,X), Γ (θ)〉,

where 〈., .〉 is the scalar product, Λ and Γ are two functions of θ and Sc(Y,X)
is the minimal sufficient statistic of the complete model. The E-step is then
divided into a simulation step (S-step) of the missing data X(k) under the

conditional distribution pX|Y(·; θ̂
(k−1)

) and a stochastic approximation step
(SA-step) of the conditional expectation, using (γk)k≥1 a sequence of real
numbers in [0, 1], such that

∑∞
k=1 γk = ∞ and

∑∞
k=1 γ

2
k < ∞. This SA-step

approximates E
[
Sc(Y,X)|θ̂

(k−1)
]
at each iteration by the value sk defined

recursively as follows

sk = sk−1 + γk(Sc(Y,X
(k))− sk−1).
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The M-step is thus the update of the estimates θ̂
(k−1)

θ̂
(k)

= arg max
θ∈Θ

(−Λ(θ) + 〈sk, Γ (θ)〉) .

The starting s0 can be set to be a vector of zeros.
Usually, the simulation step of the hidden trajectory X(k) conditionally

to the observations Y cannot be directly performed. We propose to resort to
Approximate Bayesian Computation (ABC) for this simulation step.

2.2 The SAEM algorithm coupled to an ABC simulation step

Approximate Bayesian Computation (ABC, Pritchard et al. [1999], Tavaré
et al. [1997], Marjoram et al. [2003]) is a class of probabilistic algorithms al-
lowing sampling from an approximation of a posterior distribution. The most
typical usage of ABC is when posterior inference on θ is the goal of the analysis
and the purpose is to sample draws from the approximate posterior πδ(θ|Y),
see Marin et al. [2012] for a review. Here and in the following Y ≡ Y1:n. The
parameter δ > 0 is a “threshold” influencing the quality of the inference, the
smaller the δ the more accurate the inference, and πδ(θ|Y) ≡ π(θ|Y) when
δ = 0. However in our study we are not interested in conducting Bayesian
inference on θ. We will use ABC to sample from an approximation to the
posterior distribution π(X0:N |Y;θ) ≡ p(X0:N |Y;θ), that is for a fixed value
of θ, we wish to sample from πδ(X0:N |Y;θ) (recall from section 2.1 that when
feasible we can take N ≡ n). For simplicity of notation, in the following we
avoid specifying the dependence on the current value of θ, which has to be
assumed as a deterministic unknown. There are several ways to generate a
“candidate” X∗0:N : for example we might consider “blind” forward simulation,
meaning that X∗0:N is simulated from pX(X0:N ) and therefore uncondition-
ally to data (i.e. the simulator is blind with respect to data). Then X∗0:N is
accepted if the corresponding Y∗ simulated from f(·|X∗1:n) is “close” to Y,
according to a threshold δ > 0, where X∗1:n contains the interpolated values
of X∗0:N at sampling times {t1, ..., tn} and Y∗ ≡ Y∗1:n. Notice that the appeal
of the methodology is that knowledge of the probabilistic features of the data
generating model is not necessary, meaning that even if the transition densities
p(Xi|Xi−1) are not known (hence pX is unknown) it is enough to be able to
simulate from the model (using a numerical scheme if necessary) hence draws
X∗0:N are produced by forward-simulation regardless the explicit knowledge of
the underlying densities.

If we consider for a moment X∗ ≡ X∗0:N as a generic unknown it is easy to
realise that we wish to sample from

πδ(X
∗|Y) ∝ Jδ(Y,Y∗) p(Y∗|X∗)π(X∗)︸ ︷︷ ︸

∝π(X∗|Y∗)

(3)

where p(Y∗|X∗) is the law of the data-generating model in dependence of X∗,
the latter having “prior” π(X∗). Here Jδ(·) is some function that depends on δ
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and weights the intractable posterior based on simulated data π(X∗|Y∗) with
high values in regions where Y and Y∗ are similar; therefore we would like
(i) Jδ(·) to give higher rewards to proposals X∗ corresponding to Y∗ having
values close to Y. In addition (ii) Jδ(Y,Y∗) is assumed to be a constant when
Y∗ = Y (i.e. when δ = 0) so that Jδ is absorbed into the proportionality
constant and the exact marginal posterior π(X∗|Y) is recovered. Basically
the use of (3) means to simulate X∗ from its prior (the product of transition
densities), then plug such draw into f(·|X∗) to simulate Y∗, so that X∗ will
be weighted by Jδ(Y,Y∗). A common choice for Jδ(·) is the uniform kernel

Jδ(Y,Y
∗) ∝ I{ρ(Y∗,Y)≤δ}

where ρ(Y,Y∗) is some measure of closeness between Y∗ and Y and I is
the indicator function; see section 4.1 for a further option. However, one of
the difficulties is that, in practice, δ has to be set as a compromise between
statistical accuracy (with a small positive δ) and computational feasibility
(δ not too small). Notice that a proposal’s acceptance can be significantly
enhanced when the posterior (3) is conditional on summary statistics of data
η(Y), rather than Y itself, and in such case we would consider ρ(η(Y), η(Y∗)).
In the most favourable case, if sufficient statistics η(·) for θ are available then
inference based on πδ(θ|η(Y)) is equivalent to inference based on πδ(θ|Y), and
of course if in addition δ = 0 this results in exact posterior inference. However,
in practice for dynamical models it is difficult to identify “informative enough”
(if not sufficient) summary statistics η(·), but see Martin et al. [2014] and
Picchini and Forman [2015]. Another important problem with the strategy
outlined above is that “blind simulation” for the generation of X∗ is often
poor. In fact, even when the current value of θ is close to its true value,
proposed trajectories rarely follow measurements when (a) the dataset is a
long series (see an instance in the example presented in section 4.1) and/or (b)
the model is highly erratic, for example when latent dynamics are expressed by
a stochastic differential equation (section 4.2). Hence, proposing trajectories
conditional to data is a more sensible strategy, and for this purpose sequential
Monte Carlo (SMC) [Cappe et al., 2007] methods have emerged as the most
successful solution for filtering in non-linear non-Gaussian state-space models.

However, should a simple accept-reject procedure with blind simulations
be feasible, algorithm 1 presents a way to perform maximum likelihood esti-
mation via SAEM and ABC acceptance-rejection, and we keep it here also for
ease of introduction to more advanced methods that we are about to present.
Algorithm 1 illustrates a generic iteration k of a SAEM-ABC method, where
the current value of the parameters is θ̂

(k−1)
and an updated value of the esti-

mates is produced as θ̂
(k)

. By iterating the procedure many times, the resulting
θ̂(k) is an approximate maximum likelihood estimate. The “repeat loop” can
be considerably expensive using a distance ρ(Y∗,Y) ≤ δ as acceptance of Y∗
(hence acceptance of X∗) is a rare event for δ reasonably small. If appropri-
ate statistics η(·) are available, it is recommended to consider ρ(η(Y∗), η(Y))
instead.
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Algorithm 1 A generic iteration of SAEM-ABC using acceptance-rejection
Simulation step: here we update X(k) using an ABC procedure sampling from
πδ(X|Y; θ̂

(k−1)
):

Repeat
– Generate a candidate X∗ from the latent model dynamics conditionally on

θ̂
(k−1)

, either by numerical methods or using the transition density (if avail-

able) i.e. by generating using the exact law pX(·; θ̂(k−1)
)

– Generate Y∗ from the error model f(Y∗|X∗)
Until ρ(Y∗,Y) ≤ δ

Set X(k) = X∗

Stochastic Approximation step : update of the sufficient statistics

sk = sk−1 + γk

(
Sc(Y,X

(k))− sk−1

)
Maximisation step: update θ

θ̂
(k)

= arg max
θ∈Θ

(−Λ(θ) + 〈sk, Γ (θ)〉)

Below we consider the ABC-SMC methodology from Jasra et al. [2012],
which proves much more effective for state-space models.

3 SAEM coupled with an ABC-SMC algorithm for filtering

3.1 The ABC-SMC filter

Here we consider a strategy for filtering that is based on an ABC version of
sequential Monte Carlo sampling, as presented in Jasra et al. [2012], with some
minor modifications. The advantage of the methodology is that the generation
of proposed trajectories is not blind to data, and the ABC distance that is eval-
uated is “local”, i.e. what is evaluated is the proximity of trajectories/particles
to each data point Yj , and “bad trajectories” are killed thus preventing the
propagation of unlikely states to the next observation Yj+1 and so on. For
simplicity we consider the case N ≡ n, h ≡ ∆. The algorithm samples from
the following target density at time tn′ (n′ ≤ n):

πδn′(X1:n′ ,Y
∗
1:n′ |Y1:n′) ∝

n′∏
j=1

Jj,δ(Yj ,Y
∗
j )f(Y∗j |Xj)p(Xj−1|Xj)

and for example we could take Jj,δ(yj ,y∗j ) = IAδ,yj (y∗j ) with Aδ,yj = {y∗j ;
ρ(η(y∗j ), η(yj)) < δ} as in Jasra et al. [2012] (see section 4.1 for a Gaussian
kernel).

The ABC-SMC procedure is set in algorithm 2 with the purpose to prop-
agate forward M simulated states (“particles”). After algorithm 2 is executed,
we select a single trajectory by retrospectively looking at the genealogy of the
generated particles, as explained below. The quantity ESS is the effective sam-
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Algorithm 2 ABC-SMC for filtering
Step 0. Set j = 1: for m = 1, ...,M sample X

(m)
1 ∼ p(X0), Y∗(m)

1 ∼ f(·|X(m)
1 ), compute

weights W (m)
1 = J1,δ(Y1,Y

∗(m)
1 ) and normalize weights w(m)

1 := W
(m)
1 /

∑M
m=1W

(m)
1 .

Step 1.
if ESS({w(m)

j }) < M̄ then

resample M particles {X(m)
j , w

(m)
j } and set W (m)

j = 1/M .
end if
Set j := j + 1 and if j = n+ 1, stop.
Step 2. For m = 1, ...,M sample X

(m)
j ∼ p(·|X(m)

j−1) and Y
∗(m)
j ∼ f(·|X(m)

j ). Compute

W
(m)
j := w

(m)
j−1Jj,δ(Yj ,Y

∗(m)
j )

normalize weights w(m)
j := W

(m)
j /

∑M
m=1W

(m)
j and go to step 1.

ple size (e.g. Liu [2008]) often estimated as ESS({w(m)
j }) = 1/

∑M
m=1(w

(m)
j )2

and taking values between 1 and M : when considering an indicator function
for Jj,δ it coincides with the number of particles having positive weight [Jasra
et al., 2012]. Under such choice the integer M̄ ≤M is a lower bound (threshold
set by the experimenter) on the number of particles with non-zero weight. In
our experiments we used “stratified resampling” [Kitagawa, 1996] in step 1 of
algorithm 2.

In addition to the procedure outlined in algorithm 2, once the set of weights
{w(1)

n , ..., w
(m)
n } is available at the end of ABC-SMC we propose to follow

Andrieu et al. [2010] (see their PMMH algorithm) and sample a single index
from the set {1, ...,M} having associated probabilities {w(1)

n , ..., w
(m)
n }. Denote

with m′ such index and with amj the “ancestor” of the generic mth particle
sampled at time tj+1, with 1 ≤ amj ≤ M (m = 1, ...,M , j = 1, ..., n). Then
we have that particle m′ has ancestor am

′

n−1 and in general particle m′′ at

time tj+1 has ancestor bm
′′

j := a
bm
′′

j+1

j , with bm
′

n := m′. Hence, at the end of
algorithm 2 we can sample m′ and construct its genealogy: the sequence of
states {Xt} resulting from the genealogy of m′ is the chosen path that will
be passed to SAEM, see algorithm 3. Notice that the ABC threshold δ does
not need to be fixed by the user but can be set adaptively: when j = 1 Jasra
et al. [2012] set δ to be the largest difference between Y1 and the Y

∗(m)
1

values, while we obtained better results by setting δ to be the αth percentile
of {ρ(η(Y

∗(m)
1 ), η(Y1)); 1 ≤ m ≤ M}. When j > 1 we take δ to be the αth

percentile of

{ρ(η(Y
∗(m)
j ), η(Yj)); 1 ≤ m ≤M,W

(m)
j−1 > 0}.

Notice in particular that the latter is computed on distances generated by
forward simulation from particles with starting points having strictly positive
weights at time tj−1.
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3.2 SAEM-ABC using SMC

We propose to integrate ABC-SMC with SAEM, resulting in algorithm 3.
SAEM allows also to compute standard errors of the estimators, through the
approximation of the Fisher Information matrix. This is detailed below.

Algorithm 3 SAEM-ABC using SMC

Step 0. Set parameters starting values θ̂
(0)

, then set M , M̄ and k := 1.
Step 1. For fixed θ̂

(k−1)
apply the ABC-SMC algorithm 2 with M particles and particles

threshold M̄ .
2 Sample an index m′ from the probability distribution {w(1)

n , ..., w
(m)
n } on {1, ...,M} and

form the path X(k) resulting from the genealogy of m′.
Step 3. Stochastic Approximation step : update of the sufficient statistics

sk = sk−1 + γk

(
Sc(Y,X

(k))− sk−1

)
Step 4. Maximisation step: update θ

θ̂
(k)

= arg max
θ∈Θ

(−Λ(θ) + 〈sk, Γ (θ)〉)

Set k := k + 1 and go to step 1.

Notice that for models where the evaluation of the likelihood is expensive,
using the ABC-SMC filter has evident computational benefits. Indeed, when
forward simulation from the likelihood is faster than evaluating the likelihood,
this strategy can be significantly faster than a standard SMC algorithm tar-
geting the exact posterior πn′(X1:n′ |Y1:n′). Furthermore, should filtering be
the only goal of the analysis (this is not our case) or should estimation of pa-
rameters θx be the only goal (assuming θy known), then with ABC-SMC it is
possible to treat cases where the observation density f(yt|·) is not analytically
available, see e.g. the examples in Calvet and Czellar [2014] such as α-stable
stochastic volatility processes.

Among other advantages, let us emphasize that the ABC-SMC filter can
be useful to alleviate particle degeneracy issues, i.e. the phenomenon where
most of the particle weights result equal to zero, either because of model
misspecification or because of the occasional outlier in the data or floating-
point underflow in the numerical computation of weights. The ability to modify
the ABC threshold δ adaptively, as previously discussed, can alleviate this
problem: though this will definitely affect the accuracy of the filter, it does
not necessarily have to result in a major impact for the resulting parameter
estimate. Also, as shown in section 4.1, SAEM-ABC-SMC can have advantages
over exact strategies for small datasets.

Fisher Information matrix The standard errors of the parameter estimates
can be calculated from the diagonal elements of the inverse of the Fisher
information matrix. Its direct evaluation is difficult because it has no explicit
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analytic form, however an estimate of the Fisher information matrix can be
easily implemented within SAEM as proposed by Delyon et al. [1999] using
the Louis’ missing information principle [Louis, 1982].

The Hessian of the log-likelihood `(θ) = L(Y;θ) can be expressed as:

∂2θ`(θ) = E
[
∂2θLc(Y,X;θ)|Y,θ

]
+ E [∂θLc(Y,X;θ) (∂θLc(Y,X;θ))′|Y,θ]

− E [∂θLc(Y,X;θ)|Y,θ] E [∂θLc(Y,X;θ)|Y,θ]
′

where ′ denotes transposition. An on-line estimation of the Hessian is obtained
using the stochastic approximation procedure of the SAEM algorithm as fol-
lows (see Lavielle [2014] for an off-line approach). At the (k+ 1)th iteration of
the algorithm, we evaluate the three following quantities:

Gk+1 = Gk + γk

[
∂θLc(Y,X

(k),θ)−Gk

]
Hk+1 = Hk + γk

[
∂2θLc(Y,X

(k),θ)

+ ∂θLc(Y,X
(k),θ) (∂θLc(Y,X

(k),θ))′ −Hk

]
Fk+1 = Hk+1 −Gk+1 (Gk+1)′.

As the sequence (θ̂
(k)

)k converges to the maximum of the likelihood, the se-
quence (Fk)k converges to the Fisher information matrix. It is possible to
initialize G0 and H0 to be a vector and a matrix of zeros respectively.

4 Simulation studies

Simulations were coded in MATLAB and executed on a Intel Core i7-2600
CPU 3.40 GhZ. For all examples we consider η(·) to be the identity function
and ρ(·) the L1 norm when using the indicator function for Jj,δ. In SAEM we
always set γk = 1 for the first K1 < K iterations and γk = (K − K1)−1 for
the remaining iterations as in Lavielle [2014]. All results involving ABC are
produced using algorithm 3 i.e. using trajectories selected via ABC-SMC.

4.1 Non-linear Gaussian state-space model

Here we study a simple non-linear model, using a setup similar to Jasra et al.
[2012]. We have {

Yj = Xj + σyνj

Xj = 2 sin(eXj−1) + σxτj , j ≥ 1
(4)

with νj , τj ∼ N(0, 1) i.i.d. and X0 = 0. We wish to estimate σx, σy > 0.
We generate n = 200 observations for {Yj} with σ2

x = σ2
y = 5 and conduct

inference for θ = (σ2
x, σ

2
y).
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We first construct the set of sufficient statistics corresponding to the com-
plete log-likelihood Lc(Y,X). This is a very simple task since Yj |Xj ∼ N(Xj , σ

2
y)

and Xj |Xj−1 ∼ N(2 sin(eXj−1), σ2
x) and therefore it is easy to show that

Sσ2
x

=
∑n
j=1(Xj − 2 sin(eXj−1))2 and Sσ2

y
=
∑n
j=1(Yj − Xj)

2 are sufficient
for σ2

x and σ2
y respectively. By plugging these statistics into Lc(Y,X) and

equating to zero the gradient of Lc with respect to (σ2
x, σ

2
y), we find that the

M-step of SAEM results in updated values for σ2
x and σ2

y given by Sσ2
x
/n and

Sσ2
y
/n respectively. Derivation of the second and mixed derivatives, useful to

obtain the Fisher information as in 3.2, is also trivial and expressions are not
reported for brevity.

In the following, we refer to Algorithm 3 as the SAEM-ABC algorithm and
to SAEM-SMC when a non-ABC sampler is used. We executed K = 1, 000
iterations of SAEM-ABC and used an indicator function for Jj,δ as defined in
section 3.1. We used M = 5, 000 particles, M̄ = 50 and α = 10 to determine
the ABC threshold δ. This induced a resampling step every third observation
corresponding to an ESS equal to 50 at the last time point. By denoting with
K1 = 300 the number of warmup iterations (i.e. when k ≤ K1 we have γk = 1),
we used γk = (k − K1)−1 for k > K1. SAEM-ABC took about 140 seconds
of computation. The evolution of the optimization is in Figure 1 where we
set on purpose exaggeratedly large starting values for the parameters to show
how rapidly the algorithm approaches convergence. If we force the algorithm
to resample at each observation, we obtain much worse results. Basically the
additional variance introduced by frequent resampling steps is detrimental
here, perhaps because the importance weights are already nearly equal and
resampling is actually reducing the number of distinct particles (see section
7.3.2 in Cappé et al. [2005]). In Figure 2 we compare data with the selected
X(k) corresponding to the last iteration of SAEM-ABC. By looking at Figure 1
we can appreciate that it took about ten iterations of SAEM-ABC to approach
desirable values, that is only 1.5 seconds of computation were required for the
initial ten iterations. However, unfortunately it seemed necessary to let the
algorithm run for many more iterations in order to obtain stable values for the
standard errors, meaning that stopping the computations when convergence
is visually apparent might produce a not-positive defined Fisher information.
In practice we started computing the quantities (Gk,Hk,Fk) from section 3.2
for k > 50 and a “long enough” warmup period K1 was needed to update
those values (which are initialised to contain zeros when the algorithm starts),
but then it was required a further stretch in the execution before it returned
satisfactory standard errors.

We now compare our results with maximum likelihood inference obtained
by combining SAEM with non-ABC sequential Monte Carlo, that is with the
bootstrap filter with trajectory selection as in the PMMH algorithm by An-
drieu et al. [2010]. Basically the strategy is the same as in algorithm 3 except
that we use an SMC step where in algorithm 2 we have f(Yj |X(m)

j ) in place
of Jj,δ(Yj , Y

∗(m)
j ) and there is no need to simulate the Y ∗(m)

j . We refer to this
algorithm as SAEM-SMC.



12 Umberto Picchini, Adeline Samson

σ
2
x

100 101 102 103 104
0

20

40

60

80

100

σ
2
y

100 101 102 103 104
0

20

40

60

80

100

Fig. 1: Non-linear Gaussian state-space model: evolution of the estimators for σ2
x (left)

and σ2
y (right) along K = 1, 000 iterations of SAEM-ABC. Horizontal lines are the true
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Fig. 2: Non-linear Gaussian state-space model: true hidden trajectory X (circles connected
with lines) and the selected trajectory corresponding to the last iteration of SAEM-ABC.

To compare the two algorithms, we consider a parametric bootstrap exper-
iment of size 100, that is we simulate independently 100 datasets with parame-
ters σ2

x = σ2
y = 5, and for each dataset we apply SAEM-ABC and SAEM-SMC.

To study the influence of the kernel choice Jj,δ, this time SAEM-ABC is im-
plemented with a Gaussian kernel

Jj,δ(Yj , Y
∗(m)
j ) ∝ 1

δ
e−(Y

∗(m)
j −Yj)2/(2δ2) (5)

so that weights W (m)
j are larger for particles having Y ∗(m)

j ≈ Yj .
The bootstrap experiment is repeated for different sample sizes n = 20, 50

and 200. Using bootstrap to estimate variances for the sampling distributions
implies that we can avoid the previous problems with a not-positive defined
Fisher matrix and thus perform shorter simulations, using K = 200 and K1 =
100. Starting values for the optimization are always σ2

x = σ2
y = 100. For

ease of comparison, we report results for (σx, σy) instead of (σ2
x, σ

2
y). Same as

before, for SAEM-ABC and for a given value of j we take α to be a percentile
for the distances {|Y ∗(m)

j − Yj |,m = 1, ...,M}: we set α = 20 to select the
initial threshold δ (at j = 1) and then α = 3 for the remaining observations
(j > 1). Means and standard errors for the resulting sampling distributions are
in Table 1, but see the discussion below and Figure 4. We notice that bootstrap
means for SAEM-ABC are very stable, with a minimal increasing in variability
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n 20 50 200
σx (true value 2.23)
SAEM-ABC 2.11 (0.37) 2.12 (0.27) 2.13 (0.12)
SAEM-SMC 1.92 (1.32) 2.61 (0.57) 2.61 (0.29)
σy (true value 2.23)
SAEM-ABC 2.60 (0.63) 2.62 (0.45) 2.69 (0.20)
SAEM-SMC 1.90 (1.26) 1.70 (0.70) 1.92 (0.39)

Table 1: Non-linear Gaussian model: means and standard errors for 100 bootstrap replica-
tions using SAEM-ABC and SAEM-SMC using different sample sizes n.

for decreasing n. For SAEM-SMC we instead observe a marked increase in
variability for decreasing n. What we noticed during our simulations was a
much smaller ESS for SAEM-ABC than for SAEM-SMC, which is expected
as in general the ABC approach relies on setting a small threshold δ > 0,
which necessarily “kills” particles. With SAEM-ABC particles will have weights
appreciably larger than zero only when very close to observations, because
of the small δ (e.g. ESS is about 10 at tn when n = 20). When n = 20
SAEM-SMC produces an ESS of about 1,000 which gives a larger freedom to
select a trajectory which might wander far away from the (few) data points,
this producing several biased estimates in the bootstrap sample, see Figure 4.
These results can have interesting implications for data-poor scenarios, e.g. in
pharmacokinetics/pharmacodynamics studies (see Lavielle [2014]). However in
the next example the variance of the residual error is much smaller and we do
not observe a marked difference between SAEM-ABC and SAEM-SMC.

4.2 A pharmacokinetics model

Here we consider a model for pharmacokinetics dynamics. For example we may
imagine to formulate a model to study the Theophylline drug pharmacokinet-
ics. This example has often been described in literature devoted to longitudinal
data modelling with random parameters (mixed–effects models), see Pinheiro
and Bates [1995] and Donnet and Samson [2008]. Same as in Picchini [2014]
here we do not consider a mixed–effects model. We denote with Xt the level
of Theophylline drug concentration in blood at time t (hrs). Consider the
following non-authonomous stochastic differential equation:

dXt =

(
Dose ·Ka ·Ke

Cl
e−Kat −KeXt

)
dt+ σ

√
XtdWt, t ≥ t0 (6)

where Dose is the known drug oral dose received by a subject, Ke is the
elimination rate constant, Ka the absorption rate constant, Cl the clearance
of the drug and σ the intensity of intrinsic stochastic noise. We simulate data
measured at n = 30 equispaced sampling times {t1, t∆, ..., t30∆} = {1, 2, ..., 30}
where ∆ = tj − tj−1 = 1. The drug oral dose is chosen to be 4 mg. After the
drug is administered, we consider as t0 = 0 the time when the concentration
first reaches Xt0 = X0 = 8. The error model is assumed to be linear, Yj =
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Fig. 4: Gaussian model: (top) sampling distributions (by kernel smoothing) from parametric
bootstrap when n = 20 for σx (left) and σy (right). Distributions using SAEM-ABC have
solid lines, while SAEM-SMC have dashed lines. Vertical lines are true parameter values.
(bottom) Same as above, with n = 50.

Xj + εj where the εj ∼ N(0, σ2
ε) are i.i.d., j = 1, ..., 30. Inference is based on

data {Y1, ..., Y30} collected at corresponding sampling times. Parameter Ka is
assumed known, hence parameters of interest are θ = (Ke, Cl, σ

2, σ2
ε) as X0

is also assumed known.
Equation (6) has no available closed-form solution, hence simulated data

are created in the following way. We first simulate numerically a solution to
(6) using the Euler–Maruyama discretization with stepsize h = 0.05 on the
time interval [t0, 30] and

Xt+h = Xt +

(
Dose ·Ka ·Ke

Cl
e−Kat −KeXt

)
h+ (σ

√
h ·Xt)Zt+h

where the {Zt} are i.i.d. N(0, h) distributed. The grid of generated valuesX0:N

is then linearly interpolated at sampling times {t1, ..., t30} to give X1:n, and fi-
nally residual error is added to X1:n according to the error model Yj = Xj+εj
as explained above. Data {Yj} are conditionally independent given the latent
process {Xt} and are generated with (Ke,Ka, Cl, σ

2, σ2
ε) = (0.05, 1.492, 0.04, 0.01, 0.102).

Sufficient statistics for SAEM The complete likelihood is given by

p(Y,X0:N ;θ) = p(Y|X0:N ;θ)p(X0:N ;θ) =

n∏
j=1

p(Yj |Xj ;θ)

N∏
i=1

p(Xi|Xi−1;θ)



Title Suppressed Due to Excessive Length 15

where the unconditional density p(x0) is disregarded in the last product since
we assume X0 deterministic. Hence the complete-data loglikelihood is

Lc(Y,X0:N ;θ) =

n∑
j=1

log p(Yj |Xj ;θ) +

N∑
i=1

log p(Xi|Xi−1;θ).

Here p(yj |xj ;θ) is a Gaussian with mean xj and variance σ2
ε . The transition

density p(xi|xi−1; θ) is not known for this problem, hence we approximate it
with the Gaussian density induced by the Euler-Maruyama scheme, that is

p(xi|xi−1;θ) ≈ 1

σ
√

2πxi−1h
exp

{
−
[
xi − xi−1 − (Dose·Ka·KeCl e−Kaτi−1 −Kexi−1)h

]2
2σ2xi−1h

}
.

We now wish to derive sufficient summary statistics for the parameters of
interest, based on the complete loglikelihood. Regarding σ2

ε this is trivial as
we only have to consider

∑n
j=1 log p(yj |xj ; θ) to find that a sufficient statistic

is Sσ2
ε

=
∑n
j=1(yj − xj)

2. Regarding the remaining parameters we have to
consider

∑N
i=1 log p(xi|xi−1;θ). For σ2 it is clear that a sufficient statistic is

Sσ2 =

N∑
i=1

([
xi − xi−1 − (Dose·Ka·KeCl e−Kaτi−1 −Kexi−1)h

]2
xi−1h

)
.

Regarding Ke and Cl things are a bit more complicated: we can write

N∑
i=1

log p(xi|xi−1;θ) ∝
N∑
i=1

[
xi − xi−1 − (Dose·Ka·KeCl e−Kaτi−1 −Kexi−1)h

]2
xi−1

=

N∑
i=1

[
xi − xi−1√

xi−1
−
(
Dose ·Ka ·Ke

Cl
√
xi−1

e−Kaτi−1 − Kexi−1√
xi−1

)
h

]2
.

The last equality suggests a linear regression approach E(V ) = β1C1 + β2C2

for “responses” Vi = (xi − xi−1)/
√
xi−1 and “covariates”

Ci1 =
Dose ·Kae

−Kaτi−1h
√
xi−1

Ci2 = − xi−1√
xi−1

h = −√xi−1h

and β1 = Ke/Cl, β2 = Ke. By considering the design matrix C with columns
C1 and C2, that is C = [C1,C2], from standard regression theory we have
that β̂ = (C′C)−1C′V is a sufficient statistic for β = (β1, β2), where ′ denotes
transposition. We take SKe := β̂2 also to be used as the updated value of Ke

in the maximisations step of SAEM. Then we have that β̂1 is sufficient for the
ratio Ke/Cl and use β̂2/β̂1 as the update of Cl in the M-step of SAEM. The
updated values of σ and σε are given by

√
Sσ2/N and

√
Sσ2

ε
/n respectively.
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Fisher Information matrix To compute the Fisher Information matrix as sug-
gested in section 3.2 we need to differentiate the complete data log-likelihood
with respect to the four parameters θ = (Ke, Cl, σ

2, σ2
ε). We differentiate w.r.t.

(σ2, σ2
ε) instead of (σ, σε) because the complete log-likelihood is expressed as

a function of sufficient statistics for (σ2, σ2
ε).

In the following we set formulas for the computation of gradient and the
Hessian matrix. Set, for i = 1, . . . , N ,

zi(θ) = xi − xi−1 − h(Dose ·Ka ·
Ke

Cl
· e−Kaτi−1 −Ke · xi−1).

The four coordinates of the gradient are:

∂

∂Ke
Lc(Y,X;θ) = − 1

σ2

N∑
i=1

zi(θ)

xi−1

(
xi−1 −

Dose ·Ka

Cl
e−Kaτi−1

)
∂

∂Cl
Lc(Y,X;θ) = − 1

σ2

N∑
i=1

zi(θ)

xi−1

(
Dose ·Ka ·Ke

Cl2
e−Kaτi−1

)
∂

∂σ2
Lc(Y,X;θ) = − N

2σ2
+

1

2hσ4

N∑
i=1

zi(θ)
2

xi−1

∂

∂σ2
ε

Lc(Y,X; θ) = − n

2σ2
ε

+
1

2σ4
ε

n∑
j=1

(yj − xj)2.

Entries for the Hessian matrix are (recall that the Hessian is a symmetric
matrix, therefore redundant terms are not reported. Further missing entries
consist of zeros):

∂2

∂2Ke
Lc(Y,X;θ) = − h

σ2

N∑
i=1

(xi−1 −Dose ·
Ka

Cl
· e−Kaτi−1)2

1

xi−1

∂2

∂2Cl
Lc(Y,X;θ) = − 1

σ2

N∑
i=1

{
1

xi−1

[
Dose ·Ka ·Ke

Cl2
e−Kaτi−1

(
h− 2zi(θ)

Cl

)]}
∂2

∂2σ2
Lc(Y,X;θ) =

N

2σ4
− 1

hσ6

N∑
i=1

zi(θ)2

xi−1

∂2

∂2σ2
ε

Lc(Y,X;θ) =
n

2σ4
ε

− 1

σ6
ε

n∑
j=1

(yj − xj)2
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Ke Cl σ σε
true values 0.050 0.040 0.100 0.319
SAEM-ABC 0.053 (0.007) 0.073 (0.011) 0.153 (0.030) 0.329 (0.118)
SAEM-SMC 0.054 (0.008) 0.070 (0.012) 0.118 (0.024) 0.400 (0.110)

Table 2: Theophylline: means and standard errors for 100 bootstrap replications using
SAEM-ABC and SAEM-SMC.

∂2

∂Ke∂Cl
Lc(Y,X;θ) = − 1

σ2

N∑
i=1

1

xi−1

{
Dose ·Ka

Cl2
e−Kaτi−1

[
h ·Ke

(
xi−1 −

Dose ·Ka

Cl
e−Kaτi−1

)
+ zi(θ)

]}
∂2

∂σ2∂Ke
Lc(Y,X;θ) =

1

σ4

N∑
i=1

zi(θ)

xi−1

(
xi−1 −

Dose ·Ka

Cl
e−Kaτi−1

)
∂2

∂σ2∂Cl
Lc(Y,X;θ) =

1

σ4

N∑
i=1

zi(θ)

xi−1

(
Dose ·Ka ·Ke

Cl2
e−Kaτi−1

)
.

Results Recall the setup given at the beginning of section 4.2, and in particular
the parameter values used to generate data (Ke,Ka, Cl, σ, σε) = (0.05, 1.492,
0.04, 0.1, 0.319). In this section, all results pertaining SAEM-ABC use the
Gaussian kernel (5). For illustration purposes, we initially consider a single
long simulation, using M = 10, 000 particles with K = 1, 500 and warmup
K1 = 300, see Figure 5, which is completed in 270 seconds. It requires about
ten iterations to approach the true parameter values, even though we let Ke

and Cl start from very unlikely values. Data and the selected trajectory {Xt}
from the last iteration of SAEM-ABC are in Figure 6. Then, same as in section
4.1, for both SAEM-ABC and SAEM-SMC we run a bootstrap simulation of
size 100 where each data set is produced using the true parameter values. For
SAEM-ABC we determined the threshold δ using α = 2.5 for the first sampling
time t1 and α = 1 afterwards, with the additional condition of forcing δ := δ̃
when the δ determined by the percentile α was larger than δ̃ = 0.003. There-
fore, by comparing such δ̃ with the typical scale of simulated data (of which
Figure 6 is an example) we can tell that we are forcing selected trajectories
to lie very close to data. We report the values for the SAEM-ABC estimates
of (σ, σε) instead of (σ2, σ2

ε) not to unnecessarily magnify discrepancies with
the true values. Since standard errors are computed from the sampling distri-
bution of the 100 estimates, we do not need to run long SAEM simulations
and instead set K = 80 and K1 = 50, see Table 2 and Figure 7 for the results.
In summary, the results are qualitatively similar and the approximation error
induced by ABC is negligible.
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Fig. 5: Theophylline model: K = 1, 500 iterations of SAEM-ABC. Top: Ke (left) and Cl
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Fig. 6: Theophylline model: data (circles) and the selected trajectory {Xt} corresponding
to the last iteration of SAEM-ABC.

4.3 Stochastic volatility model

Here we consider the following stochastic volatility model{
Zj = β exp(Xj/2)νj

Xj = αXj−1 + στj , j ≥ 1
(7)
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Fig. 7: Theophylline: sampling distributions (by kernel smoothing) from parametric boot-
strap using SAEM-ABC (solid lines) and SAEM-SMC (dashed lines). Vertical lines are true
parameter values.

with νj ∼ N(0, 1) i.i.d. and τj ∼ N(0, 1) i.i.d. where the Zj can be observed
while the Xj are latent (volatility). Here θ = (α, β, σ). This type of model,
and its generalisations, have been very widely used in various areas of eco-
nomics and mathematical finance: inferring and predicting underlying volatil-
ity from observed price or rate data is an important problem. For such a model
p(Zj |Xj) is N(0, β2 exp(Xj)) and p(Xj |Xj−1) is N(αXj−1, σ

2) hence it is easy
to write the complete likelihood, and is also easy to determine the sufficient
statistics. However the model is challenging, as unlike in the previously dis-
cussed examples where the variance of Zj |Xj is constant (albeit unknown),
here the conditional variance of the observations β2 exp(Xj) is dependent on
the process itself. Therefore a less than optimal filtered value for the state Xj

will result in a drastic change in the estimated variability of Zj |Xj , meaning
that in ABC simulated values Z∗j might lie very far from actual observations.
Section 1.3.5 in Cappé et al. [2005] suggests that working with the following,
equivalent, representation can be numerically convenient{

Yj = log β2 +Xj + εj

Xj = αXj−1 + στj
(8)

where Yj := logZ2
j and the εj are i.i.d. realizations from a logχ2

1 distribution.
We employ model (8) in our experiments. Notice that generating a draw from a
logχ2

1 distribution is trivial, by simply generating from the N(0, 1) distribution
then squaring the result and finally taking the natural logarithm. We have that

p(yj |xj) =
1

21/2Γ ( 1
2 )
· 1

β
exp

(
yj − xj

2

)
e
−

exp(yj−xj)
2β2
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and we can easily deduce sufficient statistics for the parameters as shown
in the previous examples. Regarding α a sufficient statistic is given by the
least squares estimate of the “regression through the origin” model E(Xj) =
αXj−1 (here E denotes expectation), hence Sα =

∑
j(Xj−1Xj)/

∑
j X

2
j−1

which also results in the updated value of α in the M-step. Then we have
Sβ2 =

∑
j exp(Yj −Xj) and Sσ2 =

∑
j(Xj − αXj−1)2 and the M-step results

in updated values
√
Sβ2/n and

√
Sσ2/n respectively for β and σ, where n is

the sample size of the measurements.

Stochastic volatility models (SVM) are often used in finance, where abun-
dance of data is usually not an issue, at least compared to other areas, that is
inference studies often consider results based on, say, n = 500 measurements
(Doucet and Johansen [2011], Calvet and Czellar [2014]). However there is no
reason why a SVM should not be considered in other application scenarios,
with a smaller n. As we remarked above, inference here is challenging and in
Figure 9 we show a comparison between SAEM-ABC and SAEM-SMC based
on one hundred simulations for three different sample sizes n = 50, 100 and
200. All simulations assume a deterministic initial condition X0 = 0 and true
parameter values (α, β, σ) = (0.9, 1, 1). All optimizations started at parameter
values (0.7,0.7,0.3). For each value of n, Figure 9 shows root mean squared er-
rors (RMSE) computed over the 100 repetitions. Each simulation was executed
with M = 10, 000 particles and SAEM iterations K = 140 and K1 = 120. For
SAEM-ABC we determined the threshold δ by considering the 0.01th per-
centile of distances together with kernel (5). The RMSE shows how challeng-
ing the model is and also that overall the ABC approach is to be preferred in
this case: by setting a very small δ we force the ABC-SMC filter to return a
trajectory corresponding to particles producing Y ∗j values very close to data.
However the figure also shows an increasing RMSE for increasing n, especially
for SAEM-ABC: we can conjecture that using such a small δ can deteriorate
the quality of the inference by assigning negligible weights to most particles
as time increases (particle degeneracy). Perhaps we should set a larger δ as n
increases. However, we also argue that since we are not using particle weights
to approximate the likelihood function, in principle for both SAEM-ABC and
SAEM-SMC we should not be particularly concerned over issues of particle
degeneracy as we only require a single plausible path to be returned, so that
SAEM can compute the required sufficient statistics and update parameters.
This aspect should be investigated further, however we note that when using
a large number of particles it can happen that, even for a “wrong” value of
the current θ, a plausible trajectory can still be produced when, for example,
an unlikely realization (outlier) for εj or τj is generated, such that Y ∗j is close
to Yj . Of course this is not reassuring as we are interested in inference for θ,
however it highlights the challenge posed by this specific model.
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Fig. 9: Stochastic volatility model: RMSE using SAEM-ABC (asterisks) and SAEMC-SMC
(squares) for sample sizes n = 50, 100 and 200. Each RMSE is computed over one hundred
simulations.

5 Summary

We have introduced a new method for approximate maximum likelihood es-
timation in state-space models. The method uses a stochastic approximation
of the EM algorithm, named SAEM (Delyon et al. [1999]), to maximize the
likelihood function and here we use an approximate Bayesian computation
(ABC) strategy to simulate proposals for the latent states. To the best of
our knowledge this is the first combination of ABC with SAEM. SAEM re-
quires model-specific preliminary analytic computations, at the very least the
derivation of sufficient statistics for the complete log-likelihood. We used the
ABC-SMC algorithm by Jasra et al. [2012] within SAEM: an advantage of us-
ing this filter is its flexibility, as it is possible to modify its setup to influence
the weighting of the particles. In other words we automatically determine a
positive tolerance δ favouring only those particles very close to observations.
This of course introduces some bias in the parameter estimation, but it didn’t
prevent SAEM-ABC to approach reasonable parameter values in about ten
iterations for two of the considered examples, even when starting from very
unlikely values (Figure 1 and 5). Furthermore, in section 4.1 it was shown
a very good behaviour of SAEM-ABC for small datasets (n = 20 and 50)
as opposed to a non-approximative strategy, the latter showing limitations in
identifying the parameters in presence of large residual variability. Good be-
haviour for a small n (n = 50, 100) was also shown for the more challenging
example in section 4.3. Moreover, when an indicator function is used for the
distance ρ(y∗, y) the values of the unnormalised particle weights are either 0
or 1, hence we won’t have problems of numerical underflow/overflow which are
typical in sequential Monte Carlo experiments.
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Given the investment in terms of preparatory calculations for SAEM-ABC
to be performed, we believe the best use of this methodology is to be found
when standard models are to be fitted routinely, that is models from the typical
toolbox in a given application area. Should instead the research work at hand
require exploration/construction of several candidate models, plug-and-play
Bayesian methods such as pseudo-marginal methods (Andrieu and Roberts
[2009], Andrieu et al. [2010]) or ABC embedded within pseudo-marginal algo-
rithms (see Jasra [2015] for a review) could offer a more immediate support,
though these do not result in maximum likelihood inference.
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