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Context: Pharmacokinetics

Models:
compartment models for diffusion of a drug, ...
modeled by ODE, PDE

Population approach:
Parameters in this differential equation depend on individuals.
distribution has to be estimated on the basis of longitudinal data.
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Model
Estimation

Model

yi = (yi1, . . . , yini )
t where yij ∈ Rp is the response for individual i at time tij ,

i = 1, . . . ,N, j = 1, . . . , ni .

For i = 1, . . . ,N, j = 1, . . . , ni :

yij = f (tij , ψi ) + σε εij , εij ∼iid N (0, 1)

ψi ∼iid N (µ,Ω),

where

f (·, ·) : R× Rd → Rp is the regression function,

ψi vector of individual parameters,

εi = (εi1, . . . , εini )
t represents the Gaussian centered residual error,

independent of ψi .

Goal: estimate from observation of y, the population parameters
θ = (µ,Ω, σ2

ε).

Difficulty: f may be solution of complex ODE, PDE without analytical
expression, achievable by numerical solver, expensive to compute.
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Likelihood

Estimate θ by maximum likelihood procedure.

The likelihood of the mixed model is the following

p(y, θ) =

∫
p(y,ψ ; θ) dψ =

N∏
i=1

∫
p(yi |ψi ; θ)p(ψi ; θ)dψi

=
N∏

i=1

∫
1

(2πσ2
ε)ni/2 exp

(
−1

2
t (yi − f (ti , ψi ))(σ2

εIni )
−1(yi − f (ti , ψi ))

)
× 1√

(2π)N |Ω|
exp

(
−1

2
t (ψi − µ)Ω−1(ψi − µ)

)
dψi
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EM principle

[Dempster and al., 1977]

Observed log-likelihood: L(y, θ) = log p(y, θ),

Complete log-likelihood: L(y,ψ ; θ) = log p(y,ψ ; θ)

EM decomposition: L(y; θ) = E(L(y,ψ; θ)|y; θ(c))︸ ︷︷ ︸
Q(θ,θ(c))

−E(log(p(ψ|y; θ))|y; θ(c)).

For fixed θ(c), if Q(θ, θ(c)) increases, then L(y; θ) increases.

EM

Random initialisation: θ(0).
For iteration k ,

1 Expectation Compute Q(θ, θ(k)),

2 Maximisation Update θ(k+1) = argmaxθQ(θ, θ(k))
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Stochastic version of EM

If Expectation step not possible simulate ψ according to p(·|y; θ(c)):

SEM [Celeux and Diebolt, 1985],

MCEM [Wei and Tanner, 1990],

SAEM [Delyon and al.(1999)].
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Stochastic Approximation of EM: SAEM

SAEM algorithm

Random initialisation: θ(0) .
For iteration k ,

1 Simulation step: Simulateψ(k) according to p(·|y; θ(k−1)),

2 Stochastic Approximation step: update the sufficient statistics SD

sk,1 = sk−1,1 + γk

 N∑
i=1

ψ
(k)
i − sk−1,1



sk,2 = sk−1,2 + γk

 N∑
i=1

ψ
(k)
i

t
ψi

(k) − sk−1,2



sk,3 = sk−1,3 + γk

 N∑
i=1

ni∑
j=1

(yij − f (tij , ψ
(k)
i ))2 − sk−1,3



3 Maximisation step: update the parameters

µ̂
(k) =

sk,1

N
, Ω̂(k) =

sk,2

N
−

sk,1
t sk,1

N2

σ̂ε
2 (k)

=
sk,3

ntot
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MH algorithm:

Coupling the SAEM algorithm with a MCMC procedure for step S:
[Kuhn and Lavielle, 2004]

Simulation step: For each individual i separately and successively, update
ψ

(k)
i with m iterations of a MH algorithm with p(ψi |yi ; θ

(k−1)) as stationary
distribution.

Drawback: Each computation of the acceptation rate needs a resolution of
the ODE /PDE to compute f .
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Gaussian Process Emulator

Sacks et al. (1989).

Assumption: f realization of a Gaussian process F :
∀x = (t , ψ) ∈ E ,

F (x) =
Q∑

k=1

βk hk (x) + ζ(x) = H(x)Tβ + ζ(x) .

Pre-computation step: y1 = f (x1), . . . , yn = f (xn) evaluations of f on a
design D.

Process F D : Conditioning F to F (x1) = y1, . . . ,F (xn) = yn.
Gaussian Process with mean mD(x) and covariance CD(x, x′) ∀x, x′.

For all x ∈ E ,
mD(x) approximates f (x),
CD(x, x) uncertainty on this approximation.
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Gaussian process emulator: illustration
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Mixed meta-model

f is replaced with F D :

yij = F D(tij , ψi )︸ ︷︷ ︸
mD(tij ,ψi )+r(tij ,ψi )

+σε εij , εij ∼iid N (0, 1)

ψi ∼iid N (µ,Ω)

r(t , ψ) = F D(t , ψ)−mD(t , ψ) ∼ GP(0,CD(t , ψ; t , ψ)),

⇒ r() takes into account the approximation error but makes the yij not
independent.

3 situations:

1 Complete mixed meta-model, keeping r as it is,

2 Simple mixed meta-model, neglecting r (replacing f with mD),

3 Intermediate mixed meta-model, replacing r with r̄ where independence
is forced by setting to 0 the correlations in the GP.
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Likelihood

pD(y;θ) =

∫
p(ψ;θ)pD(y|ψ;θ)dψ ,

=

∫
p(ψ;θ)

1
(2π)1/2|σ2

ε Intot + CD(t,ψ)|1/2

exp
(
−1

2
t (y−mD(t,ψ))(σ2

ε Intot + CD(t,ψ))−1(y−mD(t,ψ))

)
dψ.

Likelihood not explicit, because mD(tij , ψi ) not linear in ψi ,

Likelihood cannot be simplified as a product of individual likelihoods
because yi not independent (matrix CD(t,ψ) is a full matrix),

computational burden to invert CD(t,ψ) at each iteration of the MCMC
algorithm.
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Estimation issues

1 Complete mixed meta-model
takes into account uncertainty due to meta-modeling,
computational burden due to inversion of the covariance matrix in the MH
algorithm,
dependence between individuals ⇒ bad mixing properties of the MH
algorithm.

2 Simple mixed meta-model
does not take into account uncertainty due to meta-modeling,
computational efficient since the likelihood is decomposable as a product of
individual likelihoods (as the exact mixed model).

3 Intermediate mixed-model
takes into account uncertainty due to meta-modeling,
neglects dependence between GP emulator approximation errors may
biased variance estimates,
computational efficient since the likelihood is decomposable as a product of
individual likelihoods.
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Convergence to MLE

Proposition

Under general condition as in [Kuhn and Lavielle, 2004]:
for the complete, intermediate or simple mixed meta-model, if the sequence
(sk ) stays in a compact set, the SAEM algorithm produces a sequence
(θ̂(k))k≥1 which converges to the (local) maximum of the corresponding ap-
proximated likelihood.
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Distance between likelihoods

Proposition

p(y; θ) likelihood of the exact mixed model, p̃D(y; θ) likelihood of a mixed
meta-model where D is a minimax design.

The support of the distribution of ψ is compact.

The functions f and mD are uniformly bounded on the support of the
distribution of ψ.

Then, there exists a constant C̃y which depends only on y such that

|p(y; θ)− p̃D(y; θ)| ≤ C̃y
ntot

σntot +2
ε

GK (aD)

where the function GK (a) tends to 0 when a → 0 and the constant aD is the
covering distance of the design of experiments D.

With regularity hypotheses, results similar to [Donnet and Samson(2007)]:
distance between p(y; θ) and p̃D(y; θ) can be as small as we want for D rich
enough.
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Simulation model

one-compartment pharmacokinetic model, first order absorption and
elimination.
at time 0, a dose D of a drug is given to patient
drug concentration described by equation:

dC
dt

= D
kake

Cl
exp(−kat)− keC, C(t0) = 0

where ka and ke are the absorption and elimination constants, Cl is the
clearance.
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Simulation model

Parameters
pharmacokinetic parameters for the theophyllin:
log ke = −2.52, log ka = 0.4, log Ck = −3.22.
dataset of 36 patients is simulated with a dose D=6 mmol and
measurements at time t = 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12 hours.
random effects were simulated assuming a diagonal variance-covariance
matrix Ω with the following diagonal elements: ωke = ωka = ωCl = 0.1.
Then a homoscedastic additive error model is simulated with a standard
error σε = 0.1.

SAEM settings
3 SAEM algorithms: exact, intermediate, simple.
100 iterations of SAEM with 15 iterations of MCMC at each SAEM S
step,
nD = 50 and nD = 100 tested, a meta-model computed for each time t .
Original domain set to [−4;−1]× [0; 2]× [−4.5; 2]

Meta-models with linear regression function and Gaussian covariance
matrix.
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Results

Parameter Intermediate Simple Exact
meta-model meta-model model

nD 50 100 50 100

µlog ke

Bias 0.101 0.007 -0.320 0.007 0.003
RMSE 0.004 0.005 0.005 0.005 0.005

Cov. 94.2 94.4 90.6 94.6 93.9

µlog ka

Bias -2.441 0.001 -8.380 0.008 -0.220
RMSE 0.222 0.162 0.910 0.160 0.160

Cov. 90.9 95.6 59.6 95.3 95.6

µlog Cl

Bias 0.388 0.036 0.160 0.036 -0.004
RMSE 0.004 0.003 0.003 0.003 0.003

Cov. 87.6 95.1 93.4 94.7 94.9

ω2
log ke

Bias -12.113 -2.745 -23.200 -2.780 -3.400
RMSE 7.131 6.404 9.730 6.530 6.460

Cov. 83.2 91.5 65.7 90.5 90.3

ω2
log ka

Bias -20.485 -3.442 20.900 -3.320 -2.440
RMSE 10.696 5.911 13.500 5.930 6.050

Cov. 72.3 89.7 96.9 89.2 90.2

ω2
log Cl

Bias 0.375 -1.145 -8.100 -1.100 -2.660
RMSE 5.944 5.726 5.810 5.690 5.650

Cov. 92.6 92.0 87.5 92.8 91.1

σ2
ε

Biais -45.262 -0.612 16.000 -0.009 -0.023
RMSE 20.719 0.232 2.950 0.220 0.220

One compartment simulations: relative bias (%), relative MSE (%) and coverage rate (%) computed over 1000 simulations, with the
intermediate meta-, the simple meta- and the exact mixed models. Meta-models are built with either nD = 50 or nD = 100 design points.
Coverage rate (Cov.) is the coverage rate of the 95% confidence interval based on the stochastic approximation of the Fisher matrix.
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Concluding remarks and further works

What is done:

Replacing an expensive solution of ODE/PDE with meta-model to make
MCMC-SAEM cheaper/possible,

integrating in modeling uncertainties due to the use of meta-model,

controlling the distance between the MLEs with exact and approximated
models.

To be continued:

in case of complete mixed-model, adapt MCMC algorithms,

adaptive numerical designs of experiments,

theoretical results with an adaptive design.
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