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Abstract

Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast
agent bolus allows the extraction of information on tissue micro-vascularization.
The dynamic signals obtained from DCE-imaging are modeled by pharma-
cokinetic compartmental models which integrate the Arterial Input Function.
These models use ordinary differential equations (ODEs) to describe the ex-
changes between the arterial and capillary plasma and the extravascular-
extracellular space. Their least squares fitting takes into account measure-
ment noises but fails to deal with unpredictable fluctuations due to exter-
nal/internal sources of variations (patients’ anxiety, time-varying parameters,
measurement errors in the input function, etc). Adding Brownian compo-
nents to the ODEs leads to stochastic differential equations (SDEs). In DCE-
imaging, SDEs are discretely observed with an additional measurement noise.
We propose to estimate the parameters of these noisy SDEs by maximum
likelihood, using the Kalman filter. In DCE-imaging, the contrast agent in-
jected in vein arrives in plasma with an unknown time delay. The delay
parameter induces a change-point in the drift of the SDE and ODE models,
which is estimated also. Estimations based on the SDE and ODE pharma-
cokinetic models are compared to real DCE-MRI data. They show that the
use of SDE provides robustness in the estimation results. A simulation study
confirms these results.
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1. Introduction

Tissue micro-vascularization and angiogenesis can now be studied in vivo
by several Dynamic Contrast Enhanced Imaging (DCE-imaging) techniques.
These techniques are increasingly used in the medical imaging of brain, heart
and cancer [1, 2, 3, 4]. DCE-imaging follows a bolus of contrast agent in-
jected during a sequential imaging acquisition with Computed Tomography,
Magnetic Resonance Imaging or Ultrasound imaging (DCE-CT, DCE-MRI
or DCE-US) [5, 1]. Recent experimental and clinical studies have shown that
DCE-imaging can assess tumor aggressiveness and monitor the in vivo effects
of treatments [6, 7, 8, 9].

Four quantities are usually used to characterize vasculature: the tis-
sue blood flow (perfusion), the permeability surface area, the tissue blood
fractional volume and the tissue extravascular-extracellular space fractional
volume [10, 11]. Sequential imaging data are related to these parameters
through pharmacokinetic compartment models, that describe the exchanges
of the contrast agent between a central compartment (plasma) and a pe-
ripheral compartment (extracellular space or interstitial water). Recently,
the need to integrate the Arterial Input Function (AIF) in the model to
estimate microcirculation parameters more accurately has been emphasized
[12, 13, 14]. However, deterministic pharmacokinetic models generally fail
to capture the random fluctuations due to external or internal environmen-
tal causes (patients’ moves, anxiety, small random variations of the micro-
vascularization parameters along time, measurement error in the AIF, base-
line estimation error, etc) which occur in supplement of the measurement
noise due to electronic devices. These additional sources of variations are
unpredictable and thus impossible to model in a deterministic way. Spatial
averaging or large regions of interest are generally considered to minimize
the failure of deterministic models on voxel data [14]. This implies mixing
or averaging dynamics which may be heterogeneous, and leads to inaccurate
parameter estimation.

In this paper, we propose to model the unexplained sources of variations
by adding random components to the compartment differential system. This
approach is applied to each voxel separately. More precisely, we consider a
pharmacokinetic model describing the kinetics of the contrast agent in the
voxel with two compartments (plasma and interstitial water). This deter-
ministic model is transformed into a stochastic differential system by adding
a Brownian motion to each differential equation. Observations obtained from
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DCE-imaging are noisy measurements of the total contrast agent quantity
described by the stochastic differential system. The measurement noise dif-
fers from the random variations added to the pharmacokinetic model. It is
due to the precision of the recording experiments and is thus an uncorre-
lated noise. Parameter estimation in this model is complex. [15] propose a
way to compute the exact likelihood using the Kalman filter recursion when
the AIF is constant. They study the asymptotic properties of the maximum
likelihood estimator and illustrate their approach on simulated data.

The aim of this paper is to extend their approach when the AIF is not
constant. The contrast agent is injected in vein and arrives in plasma after an
unknown time delay δ (Bolus Arrival Time). Thus the delay parameter δ is
a time where a change occurs in the drift of the SDE and ODE models. This
yields to a the model including a change-point detection. As proved in [15],
the noisy discrete observations taken here is an ARMA(2,2) process. Under
some assumptions on the AIF function, we study the method proposed by [16]
for estimating the change-point in an ARMA model. We also estimate the
microcirculation parameters and the change-point by maximum likelihood.
This approach is compared with the classic deterministic model on real data,
illustrating the improvement in estimation quality of the SDE model. A sim-
ulation study confirms these results. Indeed, the use of a stochastic model
stabilizes parameter estimations and provides robustness in the estimation
results with respect to special or sensitive data points (e.g. due to patient
movements or measurement disturbances). When we remove some special
data points, the ODE estimation may change totally while the SDE estima-
tion remains stable. Note that the ODE estimation encounters numerical
difficulties due to constraints on the parameters. Such numerical problems
are not observed for the SDE estimation under the same constraints.

The article is organized as follows. In Section 2, the data, the deter-
ministic and stochastic differential systems are presented. The estimation
methods are described in Section 3. The results of estimation on DCE-MRI
data of normal female pelvises are given in Section 4 for both ODE and SDE
models. A simulation study is presented in Section 5. The discussion and
conclusions are presented in Section 6.
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2. Models

2.1. MRI data extraction

The acquisition of the MRI sequence was performed at discrete times
t0 = 0 < t1 < . . . < tn = T . Two local sets of voxels were drawn manually
on one of the MR images (one in the left iliac artery and the other in the
pelvis) and propagated automatically over the entire image sequence. For a
given voxel, the gray levels are denoted (z0, . . . , zn). A baseline gray level b0

is estimated by averaging the first times of the sequence before the injection
of the contrast agent. Observations are defined as the gray level differences
between the voxel gray levels zi and the baseline gray level b0 and are de-
noted yi = zi − b0 for i = 0, . . . , n. The measurements obtained from the
arterial voxel after removing the baseline are denoted (AIF (ti))0≤i≤n (Arte-
rial Input Function). We assume that the gray level variation yi at time ti
is proportional to the total quantity of contrast agent inside the voxel up to
some additive measurement errors due to the acquisition technique. Let S(t)
denote the total quantity of contrast agent inside the voxel. The following
relation is assumed

yi = S(ti) + σεi, (1)

where (εi) are the measurement error random variables, assumed to be Gaus-
sian, centered, standardized, mutually independent and independent of (S(t))
and σ is the constant noise level. The whole vector of data is denoted y0:n.

2.2. Pharmacokinetic models

Two physiological models are considered to describe the evolution of S(t)
within each voxel after the contrast agent injection. They are both derived
from the same pharmacokinetic model [10, 11] based on a compartmental
analysis (Figure 1). In this model, the contrast agent within a tissue voxel is
assumed to be either in the plasma compartment of the micro-vessels (cap-
illaries) or inside the interstitial compartment (extracellular-extravascular
space). The contrast agent quantities in a single unit voxel at time t are
denoted QP (t) and QI(t) for plasma and interstitial compartments, respec-
tively. In a single voxel of unit volume, we have S(t) = QP (t) + QI(t). The
contrast agent, a gadolinium chelate, cannot enter red or tissue cells.

The contrast agent is injected in vein at time t0, transits in the artery
and arrives in plasma, with a tissue perfusion flow per unit volume equal
to FT ≥ 0 (in ml.min−1.100ml−1), proportionally to the concentration in
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Figure 1: Two-compartment physiological pharmacokinetic model used to describe the
distribution of the contrast agent.

the artery AIF/(1 − h), where h is the hematocrit rate. The delay with
which the contrast agent arrives from the arteries to the plasma (or Bolus
Arrival Time) is denoted δ. The contrast agent is eliminated from plasma
with the perfusion flow FT , proportionally to the concentration of contrast
agent in plasma QP/(Vb(1 − h)), where Vb ≥ 0 is the part of whole blood
volume (in %). The quantity of contrast agent exchanging from plasma
to interstitium is equal to PS times the concentration of contrast agent in
plasma QP/(Vb(1 − h)), where PS is the permeability surface area product
per unit volume of tissue (in ml.min−1.100ml−1) and Ve ≥ 0 is the part of
extravascular extracellular space fractional volume (in %). Conversely, the
quantity of contrast agent exchanging from interstitium through plasma is
equal to PS times the concentration of contrast agent in interstitium QI/Ve.
Note that Vb + Ve ≤ 100. The hematocrit rate h is set to h = 0.4. Both t
and δ are measured in seconds.

2.3. The ordinary differential pharmacokinetic model (ODE)

Using the pharmacokinetic model presented in Figure 1 and assuming
constant rates in the exchanges, [10] propose the following differential equa-
tions to model the contrast agent kinetics, called the Ordinary Differential

5



Equation (ODE) model:

dQP (t)

dt
=

FT
1− h

AIF (t− δ)1[δ,∞)(t)−
PS

Vb(1− h)
QP (t) +

PS

Ve
QI(t)

− FT
Vb(1− h)

QP (t), (2)

dQI(t)

dt
=

PS

Vb(1− h)
QP (t)− PS

Ve
QI(t)

where 1[δ,∞)(t) is the binary function equal to 1 when t belongs to the interval
[δ,∞) and 0 otherwise. We assume that no contrast agent exists inside the
body before acquisition. Hence the initial conditions QP (t0) = QI(t0) = 0
and AIF (t0) = 0 hold, with t0 = 0. The delay δ corresponds to a change-
point in the model. This model only requires the biological parameters of
interest (FT , Vb, PS, Ve, δ) and the knowledge of AIF (t). Given a set of pa-
rameters and the AIF, QP and QI are deterministic functions of time.

2.4. The stochastic differential pharmacokinetic model (SDE)

The ODE model (2) is a simplified model of the true contrast agent phar-
macokinetics. For example, it fails to capture measurement errors in the
arterial input function, or random fluctuations along time in the microcircu-
lation parameters. These variations are unpredictable. Our main hypothesis
is that a more realistic modeling can be obtained by a stochastic approach.
We introduce a stochastic version of the ODE model, by adding random
components to each equation:

dQP (t) =

(
FT

1− h
AIF (t− δ)1[δ,∞)(t)−

PS

Vb(1− h)
QP (t) +

PS

Ve
QI(t)

− FT
Vb(1− h)

QP (t)

)
dt+ σ1dW

1
t , (3)

dQI(t) =

(
PS

Vb(1− h)
QP (t)− PS

Ve
QI(t)

)
dt+ σ2dW

2
t

where (W 1
t ) and (W 2

t ) are two independent real-valued standard Brownian
motions, and σ1, σ2 are the standard deviations of the random perturbations,
also called volatility parameters. The initial conditions are the same as above.

Although we use the same notations as in (2), given a set of parame-
ters and the AIF, the solutions QP and QI of (3) are stochastic processes.
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This model is called the Stochastic Differential Equation (SDE) model. This
SDE is time-inhomogeneous due to the AIF. Its expectation corresponds to
the ODE model, which includes the change-point δ. Therefore SDE and
ODE parameters have the same physiological interpretation. The random
part of the SDE represents the random fluctuations around the determinis-
tic ODE. In particular, the random perturbation σ1dW

1
t takes into account

the measurement noise of the arterial input function among other sources of
variations.

This model can be written in a matrix form. Let denoteQ(t) = (QP (t), QI(t))
′,

(W (t) = (W1(t),W2(t))′, t ≥ 0) a standard 2-dimensional Brownian motion
where X ′ denotes the transposed matrix of X. The SDE system (3) is written

dQ(t) = (GQ(t) + F (t))dt+ ΣdW (t), Q(0) = (0, 0)′ (4)

G =

(
−λ− β β

λ −k

)
, Σ =

(
σ1 0
0 σ2

)
, F (t) =

(
αAIF (t− δ)1[δ,∞)(t)

0

)
,

with a change-point in the drift function at time t = δ and where α, β, λ, k
are related to the biological parameters by the relations

α =
FT

1− h
, β =

FT
Vb(1− h)

, λ =
PS

Vb(1− h)
, k =

PS

Vb(1− h)
+
PS

Ve
.

In the following, we consider two models of perturbations, i.e. two differ-
ent volatility matrices Σ. Model SDE 1 corresponds to the case σ1 6= σ2 6= 0
and model SDE 2 to σ2 = 0, corresponding to these volatility matrices,
respectively:

Σ1 =

(
σ1 0
0 σ2

)
, Σ2 =

(
σ1 0
0 0

)
. (5)

3. Estimation methods

Estimation in ODE is classically performed with standard least squares
in Section 3.1. Estimation in SDE models is complex due to the change-point
detection δ and is presented in Section 3.2.

3.1. Estimation in the ODE model

We aim at estimating the parameters of interest (FT , Vb, PS, Ve, δ, σ) of
the ODE model observed with additive noise. The parameters (FT , Vb, PS, Ve, δ)
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are classically estimated by standard least squares by minimizing

n∑
i=0

(yi − S(ti))
2 =

n∑
i=0

(yi −QP (ti)−QI(ti))
2 (6)

with respect to (FT , Vb, PS, Ve, δ) where (QP (t), QI(t)) are the solutions of
(2). A plug-in of these estimated parameters in (2) provides an estimation
of the functions QP (t), QI(t) and S(t) denoted Q̂ode

P (t), Q̂ode
I (t) and Ŝode(t),

respectively. To estimate σ, we set

σ̂ =

√√√√ 1

n− 4

n∑
i=0

(yi − Ŝode(ti))2. (7)

For short, we set φ = (FT , Vb, PS, Ve, δ, σ) and φ̂ = (F̂T , V̂b, P̂ S, V̂e, δ̂, σ̂).
Standard deviations for each parameter estimate except δ are obtained nu-
merically through the Fisher information matrix. Indeed, the likelihood is
not derivable with respect to δ.

3.2. Estimation in the SDE model

For the statistical parameters in the SDE model, we set θ = (FT , Vb, PS, Ve,
σ1, σ2, σ) the parameters vector where δ is omitted. The discretized process
(S(ti)) is a hidden Markov chain which yields to a Hidden Markov Model
(HMM) for (y0:n, S(ti)). Due to the SDE model and assumptions, (S(t)) is a
Gaussian process and y0:n is a Gaussian vector. More precisely, in equation
(4), matrix G is diagonalizable. Let us denote D the corresponding diagonal
matrix of eigenvalues and P the matrix of eigenvectors. Let X(t) = P−1Q(t)
and Γ = P−1Σ. The observation times are equally spaced. We denote
ti+1 − ti = ∆ and Xi = X(ti). Thus, the discrete-time evolution system is{

Xi = AXi−1 +Bi + ηi, ηi ∼ N (0, Ri)
yi = HXi + σεi

(8)

with H = (1, 1)P , A = eD∆, Ri+1 =
∫ i∆

(i−1)∆
eD(ti−s)ΓΓ′eD

′(ti−s)ds and

Bi =

{
0 if 0 ≤ i∆ ≤ δ∫ i∆

(i−1)∆
eD(ti−s)P−1F (s)ds if δ < i∆
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By introducing the auto-regressive process Zi = AZi−1 + ηi, the change-
point can be isolated in the system. Formally, system (8) is equivalent in
distribution to the following set of equations

Zi = AZi−1 + ηi, ηi ∼ N (0, Ri)
ỹi = HZi + σεi,
yi = ci + ỹi,

with

Ci = ACi−1 +Bi = Ai
∫ i∆

0

e−DsP−1F (s)ds (9)

and ci = HCi. Thus ci = 0 for i∆ ≤ δ and ci 6= 0 for i∆ > δ. Remark
that as in [15], process (Zi) is an AR(1) two-dimensional process and ỹi is
an ARMA(2,2) process.

We assume that the delay δ is such that δ = j?∆, with j? ∈ N. The
maximum likelihood estimators of (θ, j?) are defined as

(ĵ?, θ̂) = arg max
j,θ

L(j, θ, y0:n)

where the log-likelihood L(j, θ, y0:n) can be exactly computed by

L(j, θ, y0:n) =

j∑
i=1

(yi −HẐ−i )2

HP−i H
′ + σ2

+ log(HP−i H
′ + σ2)

−
n∑

i=j+1

(yi −HẐ−i − cj)2

HP−i H
′ + σ2

+ log(HP−i H
′ + σ2).

where Ẑ−i and P−i are the expectation and variance of the prediction dis-
tribution p(Zi|y0:i−1) computed by the Kalman algorithm [see 15, for more
details]. From a practical point of view, we propose an estimation method in
two steps. We first maximize L(j, θ, y0:n) in θ for each j, yielding to θ̂(j) =
arg maxθ L(j, θ, y0:n). Then j? is estimated by ĵ? = arg maxj L(j, θ̂(j), y0:n).
In Section 4, we compute the maximum likelihood estimators of all param-
eters on real data assuming that the AIF is piecewise constant. Figure 2
illustrates the second step of this two-step method. The value of the max-
imum L(j, θ̂(j), y0:n) of the log-likelihood L(j, θ, y0:n) for a given value j is
fitted with respect to different values of j.
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Figure 2: Estimation of the change-point δ = j?∆ in model SDE 1 for the first real
dataset. Maximum L(j, θ̂(j), y0:n) of the log-likelihood L(j, θ, y0:n) for a given value j is
fitted with respect to different values of j. Estimator ĵ? is the value of j which maximizes
L(j, θ̂(j), y0:n).

3.2.1. Assumptions on the AIF

The simultaneous theoretical study of maximum likelihood estimators ĵ?

and θ̂ is difficult. To obtain theoretical properties on the change-point es-
timation in this model, we propose a separate study. We introduce a least
squares estimator of the change-point inspired by [16]. We study its asymp-
totic properties under different assumptions on the AIF. This method is not
implemented here as we believe that the exact MLE is better. Neverthe-
less, it illustrates the asymptotic properties of change-point estimation. An
analogous behavior is expected for the MLE.

We assume that the AIF is piecewise constant: there exist known numbers
(aj)j=1,...,n (measured in an artery voxel) such that

AIF (t) =
n∑
j=1

aj1[(j−1)∆,j∆[(t).

In that case, from equations (4) and (9), we have

Ci =

i−j?∑
j=1

aje
(i−j−j?)∆D(I − e−∆D)D−1P−1(α 0)′.

But e(i−j−j?)∆D is close to 0 if j ≤ i− j? − 2.
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Now we distinguish two conditions which correspond to two phases of the
experiment (see Figure 3).

(A1) Linear assumption on AIF We consider that AIF has a linear
growth (aj = j∆), which is realistic in the first phase of the experiment. In
this first phase, ci can be approximated by ci = µ0 +µ1(i− j?) where µ0 and
µ1 are two unknown parameters depending on θ and ∆.

(A2) Constant assumption on AIF We consider that AIF is constant,
which is realistic after the peak of injection. Then ci can be approximated
by an unknown constant µ2.

3.2.2. Change-point estimator

Under (A1), the system of observations is
Zi = AZi−1 + ηi, ηi ∼ N (0, Ri)
ỹi = HZi + σεi
yi = µ0 + µ1(i− j?)1i>j? + ỹi

[16] considers a similar problem with an ARMA process (ỹi) but with a
constant change in the drift µ0 + µ11i≥j? . The next proposition shows that
our problem reduces to that case.

Proposition 1. Consider the process of increments Vi = yi+1 − yi for 1 ≤
i ≤ n. We have

Vi = µ11i≥j? + Ui (10)

with Ui an ARMA(2,3) process.

Proof. Let Ui = ỹi+1 − ỹi. Process (ỹi) is an ARMA(2,2) process [see 15].
Thus there exist two parameters θ1, θ2 and a MA(2) process (νi) such that

ỹi − (θ1 + θ2)ỹi−1 + θ1θ2ỹi−2 = νi

Therefore
Ui − (θ1 + θ2)Ui−1 + θ1θ2Ui−2 = νi − νi−1

and (νi − νi−1) has a MA(3) structure. �

The least-squares change-point estimator studied in [16] can be applied
to the process (Vi). Consider V̄j the mean of the first j observations and V̄ ∗j
the mean of the last n − j observations which are the usual least squares
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estimators of the mean before and after the change-point, i.e. µ0 and µ1.
The corresponding sum of squares of residuals is

S2
j =

j∑
i=1

(Vi − V̄j)2 +
n∑

i=j+1

(Vi − V̄ ∗j )2

The estimator is defined as follows:

ĵ = arg min
j
S2
j

The properties of ĵ are studied using the arguments of [16], Proposition 3.

Proposition 2. Assume that j? = bnτ ?c for τ ? ∈ (0, 1) and define τ̂ = ĵ/n.
Then,

τ̂ − τ ? = OP (
1

µ2
1n

). (11)

The fact that τ is estimated faster than θ justifies the two steps estimation
approach.

3.2.3. Estimation of microcirculation parameters

We now study the properties of θ̂(j) where j is fixed at the true value j?,
θ̂ = θ̂(j?), under (A2). The system of observations is

Zi = AZi−1 + ηi, ηi ∼ N (0, Ri)
ỹi = HZi + σεi
yi = µ2 + ỹi

This reduces to the case treated by [15]. Taking the same parametrization
θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) such that

A = A(θ) =

(
θ1 0
0 θ2

)
, R = R(θ) =

(
θ3 θ5

θ5 θ4

)
, θ6 = µ2 and θ7 = σ,

they prove the following proposition:

Proposition 3. Only six out of the seven parameters are identifiable. Under
the assumption that (ỹi) is stationary, the maximum likelihood estimators of
these six parameters are consistent and asymptotically Gaussian with rate√
n.
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Therefore, we propose to approximate the standard deviations for each
parameter estimate through the Fisher information matrix. This asymptotic
approximation is realistic when n is large, which is the case in our applica-
tion. We propose to compute ∂2

∂θi∂θj
l0:n(θ) with a finite-difference like method,

where l0:n(θ) = L(j?, θ, y0:n):

∂2l0:n

∂θi∂θj
(θ) ≈ 1

4∆θi∆θj
(l0:n(θ + ∆θi + ∆θj) + l0:n(θ −∆θi −∆θj)

−l0:n(θ + ∆θi −∆θj)− l0:n(θ −∆θi + ∆θj))

where ∆θi and ∆θj are small step sizes in the direction of θi and θj, respec-
tively. The convergence rate of the method is improved by the Richardson
method [see 17, for details]. Hence, we can derive an asymptotic confidence
interval for θ computing In(θ) = − 1

n
∂2

∂θi∂θj
l0:n(θ).

The corresponding estimations Q̂sde
P (t), Q̂sde

I (t) and Ŝsde(t) of QP (t),
QI(t) and S(t) are defined as the conditional expectations of QP (t), QI(t)
and S(t) given the observation y0:n and assuming the unknown parameter θ
to be equal to θ̂:

Q̂sde
P (t) = Eθ̂(QP (t)|y0:n), Q̂sde

I (t) = Eθ̂(QI(t)|y0:n), Ŝsde(t) = Eθ̂(S(t)|y0:n).

These estimated stochastic signals are computed by the smoother algorithm
[see 15, for more details]. We also propose to quantify the uncertainty of
these estimated signals by computing their 95% confidence intervals.

3.3. Numerical implementation of the two estimation methods

The computation of the ODE mean squares and the SDE likelihood re-
quired the integral of the arterial input function, which was approximated
using the trapezoidal method: the integral

∫ ti
t0
AIF (x)dx over the interval

[t0, ti] was approximated by
∑i

k=1(tk − tk−1)(AIF (tk) + AIF (tk−1))/2. The
minimization of (6) for the ODE model and the maximization of the likeli-
hood for the SDE models were performed under the constraints:

0 ≤ PS, FT ; 0 ≤ Vb, Ve ≤ 100; Vb + Ve ≤ 100.

The two optimizations were done using the MatlabTM function fmincon avail-
able in the toolbox Optimization release 2008b, which realizes a constraint
optimization. Using this fmincon function, we observed that the initial val-
ues provided by the user have no influence on the final optimization results.
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Therefore, the initial values were arbitrarily chosen as FT = 50, Vb = 10,
PS = 10, Ve = 10 for the ODE optimization adding the extra values σ = 5,
σ1 = 1 and σ2 = 0.5 for the SDE optimization. Computational times were
about 4 seconds for the ODE and 20 seconds for the SDE methods, on a Mac
Pro 3 Ghz with 7 Go RAM, Mac OS X 10.5 and MatlabTM Release 2008b.

4. Estimation on real data

DCE-MRI data from a series of normal female pelvises DCE-MRI were
used to test and optimize the processing method [18]. For DCE-MRI, a dy-
namic contrast-enhanced sequence was acquired in the axial plane. A dose of
0.1 mmol.kg−1 body weight of DOTA gadolinium was injected intravenously.
Images were obtained at 2.4 second intervals for a total of 320 seconds after
injection, yielding a total of 130 time frames.

Four datasets were analyzed on a voxel by voxel basis. The ODE and the
two SDE models (5) were successively used to estimate the parameters and
the associated predicted concentrations. The ODE and SDE residuals were
computed as the difference between the observations y0:n and the predictions
of the corresponding model. The BIC criteria was computed to compare the
four models.

The first dataset is summarized in Table 1 and Figure 3, top figures.
Standard deviation of δ is meaningless as the likelihood is not derivable with
respect to δ. For this voxel, the ODE and SDE estimates of FT , Vb, PS,
Ve and δ were identical as well as the contrast agent quantity predictions.
In that case, the estimates of σ1 and σ2 were both very small (< 10−3).
The standard errors of the microcirculation parameters were slightly greater
for the SDE models than for the ODE model. The standard error of σ was
systematically close to 0 with the SDE models. BIC was smaller for the ODE
model, as it is the most parsimonious model.

For dataset 2, ODE and SDE estimations were statistically different at
least for one parameter (FT ) (see Table 2 and Figure 3, bottom figures).
The 95% ODE confidence interval of parameter FT did not contain the SDE
estimated values. The estimation of δ was the same for the two SDE models
and different for the ODE model. The parameter σ2 is estimated close to
zero (< 10−3) in model SDE 1 while σ1 is different from 0 (σ̂sde

1 = 1.0) for
the two SDE models. Model SDE 2 has the smaller BIC among the two SDE
models. The standard deviations of all the microcirculation parameters are
lower with model SDE2. The predictions Q̂P , Q̂I and Ŝ obtained by the
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Table 1: Estimated parameters and BIC criteria for the first dataset, using models ODE,
SDE1 and SDE2. The values in parenthesis are the standard deviations evaluated using a
numerical computation of the Fisher Information matrix.

ODE model SDE 1 model SDE 2 model
FT 51.56 (2.67) 51.56 (3.18) 51.56 (2.89)
Vb 40.01 (4.69) 40.01 (5.70) 40.01 (4.99)
PS 12.95 (3.77) 12.95 (4.55) 12.95 (3.81)
Ve 29.84 (2.22) 29.84 (2.56) 29.84 (2.02)
δ 7.20 (−−) 7.20 (−−) 7.20 (−−)
σ 8.06 (0.84) 7.93 (0.19) 7.93 (0.00)
σ1 – 0.00 (0.00) 0.00 (0.88)
σ2 – 0.00 (0.97) –

BIC 931.82 941.50 936.63

Table 2: Estimated parameters and BIC for the second dataset, using models ODE, SDE1
and SDE2. The values in parenthesis are the standard deviations evaluated using a nu-
merical computation of the Fisher Information matrix.

ODE model SDE 1 model SDE 2 model
FT 61.10 (4.06) 78.19 (3.15) 78.19 (0.52)
Vb 41.35 (5.41) 33.98 (5.55) 33.98 (4.49)
PS 6.90 (4.77) 11.88 (6.95) 11.88 (5.46)
Ve 16.79 (3.96) 18.75 (3.17) 18.75 (2.95)
δ 9.60 (−−) 12.00 (−−) 12.00 (−−)
σ 9.11 (0.81) 8.49 (0.68) 8.49 (0.00)
σ1 – 1.08 (0.00) 1.08 (1.06)
σ2 – 0.00 (1.23) –

BIC 963.70 971.98 967.11
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Figure 3: Predictions for real datasets 1 (top line) and 2 (bottom line), obtained with
models ODE, SDE1 and SDE2 from left to right. Black stars (∗) are the tissue observations
(yi), the AIF observations are represented by the red line for dataset 1, crosses (×) are
the residuals. The plain blue, dashed pink and dash-dotted green lines are respectively
the predictions for S(t), QP (t) and QI(t).
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Table 3: Estimated parameters and BIC for dataset 3, using models ODE, SDE1 and
SDE2. The values in parenthesis are the standard deviations evaluated using a numerical
computation of the Fisher Information matrix.

ODE model SDE 1 model SDE 2 model
FT 22.40 (1.41) 17.54 (3.53) 17.55 (3.30)
Vb 36.09 (2.30) 45.23 (7.68) 45.18 (5.91)
PS 2.03 (0.56) 0.57 (5.77) 1.07 (5.86)
Ve 63.91 (1.19) 0.03 (4.05) 0.06 (0.34)
δ 12.00 (−−) 9.60 (−−) 9.60 (−−)
σ 7.69 (0.83) 6.51 (0.00) 6.51 (0.00)
σ1 - 1.27 (0.66) 1.27 (0.95)
σ2 - 0.03 (1.02) -

BIC 937.82 925.32 920.46

ODE and the SDE estimations look quite different: SDE estimation achieves
a better fit than ODE around times 90 and 130. Regarding the BIC criteria,
the ODE model is the better model.

For dataset 3, the SDE predicted quantities of contrast agent in the in-
terstitial compartment Q̂sde

I (t) was always null (Q̂sde
I (t) = 0 ∀t ≥ 0) while

the ODE prediction Q̂ode
I (t) was not (Figure 4). The ODE model detected

exchanges inside the voxel between the two compartments. The ODE resid-
uals were correlated, especially between times t = 40 and t = 75 contrary
to the SDE residuals. The parameter estimates obtained by the ODE and
the SDE models were different (Table 3). The two SDE estimated param-
eters are similar. The SDE1 estimated exchange volume (V̂ sde

b = 0.03) was
statistically smaller than the ODE estimate (V̂ ode

b = 63.91). The SDE1 esti-

mated permeability surface product (P̂S
sde

= 0.57) was much smaller than

the ODE estimate (P̂S
ode

= 2.03). The estimation of σ1 is different from
0 (σ̂sde

1 = 1.27). As V̂ ode
b + V̂ ode

e = 100 (see Table 3), the ODE estimation
stopped at a boundary of the optimization domain (see Section 3.3). This
led us to investigate the analysis further. By computing the ratio QP/AIF ,
we suspected that the ODE estimation was strongly influenced by the last
observation times. Therefore we removed the last 3 (and then the last 5)
observations. While the SDE estimation remained stable when removing ob-
servations (up to changes in the last digits), the ODE estimation changed
totally. The results with the last 5 observations removed are added in Table
4. Figure 4 shows enhancement curves corresponding to the estimated pa-
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Table 4: Estimated parameters and BIC for dataset 3 without the last 5 points, using
models ODE, SDE1 and SDE2. The values in parenthesis are the standard deviations
evaluated using a numerical computation of the Fisher Information matrix.

ODE model SDE 1 model SDE 2 model
FT 20.05 (0.00) 17.50 (3.23) 17.50 (3.47)
Vb 17.77 (0.00) 45.07 (3.99) 45.02 (6.38)
PS 120.78 (0.00) 0.77 (0.00) 1.26 (6.26)
Ve 15.75 (0.00) 0.04 (3.26) 0.06 (0.36)
δ 9.60 (−−) 9.60 (−−) 9.60 (−−)
σ 8.10 (0.67) 6.37 (0.00) 6.37 (0.00)
σ1 – 1.34 (0.47) 1.34 (0.98)
σ2 – 0.03 (1.03) –

BIC 897.99 888.04 883.21

rameters of Tables 3 and 4. Top curves are obtained with all data points by
the ODE model (left) and the SDE models (right) corresponding to Table
3. In the SDE curves, the major part of the enhancement comes from the
plasma while the interstitial enhancement is close to zero. Conversely, the
ODE curves show enhancement from both plasma (dashed pink) and inter-
stitium (dashdotted green). The bottom curves are obtained by the ODE
model (left) and the SDE model (right) without the last 5 data points (right)
corresponding to Table 4. On the bottom ODE curves, there is an inversion
of curves (compared with the top left curves): the major part of enhancement
is due to interstitium. Finally, the SDE2 model has the smaller BIC among
the three models and is considered as the best model.

5. Simulated study

Simulations were performed to illustrate the properties of the estimators
of the ODE and SDE models. The ODE and SDE estimators were those
presented in the previous sections. The parameter values used for simulations
were FT = 70 ml min−1 100 ml−1, Vb = 20 %, PS = 15 ml min−1 100 ml−1,
Ve = 15 %, δ = 9.6 s and σ = 7 for the measurement error. First, a
hundred data sets were simulated using the ODE model which corresponds
to σ1 = σ2 = 0 in the SDE model. Parameters were estimated by the
two methods. As shown in Table 5 (top), estimations by both methods
were identical. Not surprisingly, the parameters σ1 and σ2 had very small
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Figure 4: Top figures: predictions for real dataset 3, obtained with models ODE (left),
SDE1, SDE2 and SDE3 from left to right. Black stars (∗) are the tissue observations (yi),
crosses (×) are the residuals. The plain blue, dashed pink and dash-dotted green lines
are respectively the predictions for S(t), QP (t) and QI(t). Bottom figures: predictions
obtained when removing the last 5 observations.
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SDE estimations. Then, a hundred data sets were simulated using the SDE
model with σ1 = σ2 = 2. Results (Table 5, middle part) show a clear
reduction of bias and standard deviations enlightening the advantage of the
SDE estimation method. At last, a hundred data sets were simulated with
PS = 1 (Table 5, bottom part), which corresponds to the case where the
exchange between plasma and interstitium is small. We simulated a hundred
data sets with the ODE model (σ1 = σ2 = 0) and a hundred data sets
with the SDE model (σ1 = σ2 = 1). Note that the standard deviations (in
parenthesis) are the empirical standard deviations computed from the 100
simulated datasets.

The SDE estimates are satisfactory. The delay δ was always estimated
without bias. The ODE estimation of the parameters FT and Ve were more
biased than the SDE estimates. When the exchange between plasma and
interstitium was small, the SDE estimates of Ve were less biased than the
ODE estimates. The true value was Ve = 15. When the simulated model was
ODE, the ODE estimate was V̂e = 27.01 and the SDE estimate V̂e = 21.02.
When the simulated model was SDE, the ODE estimate was V̂e = 26.7 and
the SDE estimate V̂e = 17. Again the SDE estimation seemed to be less
sensitive to special value or data.

6. Discussion

To take into account noises which induce instability in microvascular-
ization parameter estimation in DCE-MRI, a stochastic version of a two-
compartment model described by stochastic differential equations was in-
troduced. On voxels of normal female pelvises DCE-MRI data, both the
stochastic and the standard deterministic two-compartment model (given
by ordinary differential equations) were implemented. The stochastic model
generally led to a more satisfactory description of enhancement curves and
provided a more robust parameter estimation method.

When the permeability surface product (PS) was small, the ODE es-
timation method was unstable and gave different results when removing a
few data points. Conversely, the stochastic method remained stable with or
without these data. This proves that the stochastic method is less sensitive
to special or sensitive data points (e.g. due to patient movements or mea-
surement disturbances) and outperforms the ODE method. The parameter
σ2 is generally estimated close to 0 while σ1 is not. As σ1 appears in the
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Table 5: Simulation study. Estimation results for three different sets of fixed parame-
ters. Estimation when simulating under the ODE model (top part of the Table), when
simulating under the SDE model (σ1 = σ2 = 2) (middle part of the Table) and when
simulating with a small PS (PS = 1) under the SDE model (σ1 = σ2 = 1) (bottom part
of the Table). Empirical means and standard deviations (in parenthesis) are computed
for each estimated parameter from 100 simulated datasets analyzed by the ODE and the
SDE estimations.

FT Vb PS Ve δ σ σ1 σ2

True par. 70 20 15 15 9.6 7 0 0

ODE est. 72.2 19.9 15.1 15.1 9.6 7.07 NA NA
(10) (2.4) (2.2) (1.3) (0) (0.35) NA NA

SDE est. 72.2 19.9 15.1 15.1 9.6 6.99 0.03 0.002
(10) (2.4) (2.2) (1.3) (0) (0.35) (0.12) (0.015)

True par. 70 20 15 15 9.6 7 2 2

ODE est. 67.4 22 18.8 22.4 9.6 12.4 NA NA
(16) (8.7) (16) (18) (0) (1.7) NA NA

SDE est. 71.9 21.7 15.3 17.3 9.6 6.88 2.54 1.22
(15) (6.6) (9.8) (13) (0) (0.51) (0.69) (0.84)

True par. 70 20 1 15 9.6 7 0 0

ODE est. 70.10 19.95 1.05 27.01 9.6 6.98 NA NA
(5.5) (0.6) (0.2) (25.6) (0) (0.3) NA NA

SDE est. 70.09 19.9 1.05 21.2 9.6 6.91 0.07 0.716
(5.4) (0.6) (0.2) (25.8) (0) (0.3) (0.2) (0)

True par. 70 20 1 15 9.6 7 1 1

ODE est. 77.8 18.4 2.42 26.7 9.6 9.69 NA NA
(12) (3.4) (3) (33) (0) (2.5) NA NA

SDE est. 72.4 19.7 2.08 17 9.6 6.89 1.32 0.716
(10) (2.5) (2.5) (26) (0) (0.32) (0.52) (0.43)
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first equation of model (3), this reflects the measurement error in the AIF.
Consequently, we recommend the use of the SDE model in this context.

These results were confirmed by the simulation study. For a given set
of parameters (FT , Vb, PS, Ve, δ, σ1, σ2, σ) and a given artificial arterial in-
put function, a hundred trajectories were simulated under the stochastic
model. For each of the hundred simulated trajectories, the parameters were
estimated by both the ODE and SDE methods. The means of estimated
parameters were globally close to the true values for both methods, with
smaller variances for the SDE method. The parameters PS and Ve were
closer to the true values with the SDE method than with the ODE method.
The estimation of Vb was very similar with both methods, whatever the PS
value. The estimation of FT was similar with both methods when PS was
large. On the contrary, for small PS, the estimation of FT became biased
with the ODE method and not with the SDE method.

The stochastic version of a classical multicompartment model is obtained
by adding Brownian components to the deterministic model, leading to stochas-
tic differential equations. Starting from a two-compartment exchange model
with four parameters (tissue blood perfusion, tissue blood volume, perme-
ability surface product, interstitial volume) and the bolus arrival time [19],
we have built a SDE whose estimation method relies on maximum likelihood
theory [15]. SDEs have been recently developed for medical applications in
glucose dynamics [20], in neuron potential dynamics [21], in pharmacoki-
netics [22, 23], or in growth curve data [24]. These applications of SDEs
show that stochastic versions of physiological models improve data fitting
and stabilize parameter estimations. These results were confirmed in our
study. Indeed, we obtained stable estimated parameters using a stochastic
version of a complex parametric model while the deterministic model was
giving results of high variability. The use of a stochastic model thus provides
a serious improvement in data fitting and robustness in the estimation results
even with a large number of parameters.

Yet, there are some limitations to our study. The two-compartment
model does not take into account the blood propagation along capillaries,
assumes instantaneous mixing into the interstitial compartment and equilib-
rium inside the interstitium of neighbor voxels. Moreover, the physiological
parameters are assumed to be constant along time. Nevertheless, the good
adjustment of enhancement curves, as measured by residuals, shows that this
model is a reasonable physiological representation of tissue microcirculation
even if it remains a crude approximation to true physiology. The model does
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not hold true for all kinds of tissues. For instance, in the liver, the sinusoids
are irrigated by a dual vascular system [25, 26] and in necrotic tissues with-
out capillary network, the contrast enhancement is due to passive diffusion
from adjacent irrigated tissues. However the present work could be extended
by adapting models. We assume that the grey level variation is proportional
to the total quantity of contrast agent inside the voxel. It might not always
be true but it allows the analysis to be performed on the original data and
simplifies the estimation procedure.

Some assumptions of the stochastic model may be criticized. For instance,
constant variances for the Brownian motions may look unrealistic. It would
be worth it to extend this work to SDE with variance functions of times or of
contrast agent quantities. This would be to the price of additional mathemat-
ical difficulties. This work could also be extended to the case of non-Gaussian
observation errors. For a unidimensional Markov chain (Xi) observed with
non Gaussian errors, [27] proposes a quasi-maximum likelihood estimator
based on the Kalman filter and shows the normality asymptotic distribu-
tion of this estimator. This approach can be extended to our bidimensional
model. An additional assumption is the independence of the two Brownian
motions, yielding easy interpretation. The extension to correlated Brownian
motions is straightforward and does not affect the estimation procedure.

To conclude, this study shows that, in view of quantifying the tissue
microcirculation parameters, the stochastic approach makes it possible to re-
duce the instability observed with the deterministic two-compartment model.
By taking into account the sources of variations in DCE-MRI data, the SDE
approach provides a more robust parameter extraction.
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