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SUMMARY

We extend the methodology for designs evaluation and optimization in nonlinear mixed effects models with
an illustration of the decrease of human immunodeficiency virus viral load after antiretroviral treatment
initiation described by a bi-exponential model. We first show the relevance of the predicted standard errors
(SEs) given by the computation of the population Fisher information matrix using the R function PFIM,
in comparison to those computed with the stochastic approximation expectation–maximization algorithm,
implemented in the Monolix software. We then highlight the usefulness of the Fedorov–Wynn (FW)
algorithm for designs optimization compared to the Simplex algorithm. From the predicted SE of PFIM,
we compute the predicted power of the Wald test to detect a treatment effect as well as the number of
subjects needed to achieve a given power. Using the FW algorithm, we investigate the influence of the
design on the power and show that, for optimized designs with the same total number of samples, the
power increases when the number of subjects increases and the number of samples per subject decreases.
A simulation study is also performed with the nlme function of R to confirm this result and show the
relevance of the predicted powers compared to those observed by simulation. Copyright 2007 John
Wiley & Sons, Ltd.

KEY WORDS: nonlinear mixed effects models; Fisher information matrix; population design; Wald test;
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1. INTRODUCTION

Nonlinear mixed effects models are increasingly used to model longitudinal data. They have been
initiated in the context of pharmacokinetics analyses by Sheiner et al. in 1972 [1] and are now more
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and more popular in other kinds of longitudinal studies in particular for human immunodeficiency
virus (HIV) viral dynamics [2–4]. The purpose of nonlinear mixed effects model approach is to
estimate the mean value of the parameters in the studied population and also to estimate their
interindividual variability. Another use of this methodology, also called the population approach,
is to determine and to quantify the influence of covariates on the parameters, which can help to
define groups of population with different levels of response. In the context of HIV viral dynamics
for instance, nonlinear mixed effects models can therefore be used to determine a difference in
the potency of antiviral treatments, through the use of markers of potency such as the parameter
describing the first HIV viral decay rate [5, 6]. Nonlinear mixed effects methodology does not
require individual parameter estimation and one of its main advantages is that it can therefore deal
with sparse individual data, where individual estimation methods would not be successful. Several
estimation methods for those models have been proposed and are now implemented in software
which makes them easier to use [7]. Methods have been proposed in the context of maximum
likelihood estimation based on an approximation of the log-likelihood using a linearization of the
model around a value of the random effects, like the First-Order (FO) method, or the First-Order
Conditional Estimation method proposed by Lindstrom and Bates [8] and implemented in the
NONMEM software [9] and in the nlme function of Splus and R software [10]. Alternatives to
those linearization methods have also been proposed, such as Gaussian quadrature [11] method,
which implements the corresponding classical numerical quadrature methods like the NLMIXED
procedure of SAS. Nevertheless, those algorithms often imply slow convergence and problems
of stability. More recently, a new algorithm has been developed, based on the most commonly
used method to estimate models with missing or non-observed data such as random effect, the
expectation–maximization (EM) algorithm. Because of the nonlinearity of the model, the new
algorithm involves a stochastic approximation version of the EM algorithm, and is thus called the
stochastic approximation expectation–maximization (SAEM) algorithm. Proof that the produced
estimates are convergent and consistent has been given [12]. The SAEM algorithm has been
implemented in the MONOLIX software [13] and a comparison study to other existing algorithms
has highlighted the small bias and root mean square errors obtained with this algorithm [14].

Before estimation, the experimenters faced the problem of the determination of the design for
collecting data. Indeed, as this approach allows sparse individual data, the data have to be chosen
informatively to avoid poor parameter estimates. Population designs are defined by several groups
of subjects; each group is composed of a number of samples to be performed on a number of
subjects at given times. Simulation studies have shown that the precision of parameter estimates
depends on the choice of the balance between the number of groups to include, the number of
subjects per group and the number and allocation of the sampling times [15, 16]. The general
theory of design determination used for classical nonlinear models [17, 18] has been extended to
nonlinear mixed effects models. This theory relies on the Rao–Cramer inequality which states that
the inverse of the Fisher information matrix (MF) is the lower bound of the variance–covariance
matrix of any unbiased parameter estimator. This involves the determination of the expression
of MF but, as there is no analytical expression of the likelihood in those models, determination
of the exact analytical expression of the population MF is not possible. An approximation was
first proposed by Mentré et al. [19], and extended by Retout et al. [20, 21]. This approximation
uses a FO Taylor expansion of the model around the random effects. Assessing the relevance of
determining population designs using this approximation of MF has been the purpose of several
papers, in which the usefulness of this approach has been demonstrated, either by simulation
[20–22] or on real pharmacokinetic studies [23, 24]. To facilitate its use, a tool for population
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design evaluation based on the approximation of MF has been proposed (PFIM) as a generic
function developed in the statistical software Splus version 6 but also in its free version, R [25].

To deal with more complex models, the expression of MF has been extended for models including
fixed effects for the influence of covariates on the parameters and for an additional variability of
the parameters of a given individual between several occasions, also called intra-individual or
inter-occasion variability [21].

A tool has also been proposed for design optimization: PFIMOPT 1.0, implemented also as
a generic function in Splus and R [25]. PFIMOPT 1.0 uses the Simplex algorithm to maximize
the D-optimal criterion, i.e. to maximize the determinant of MF for a given a priori value of
the parameters. For a given total number of samples, the best sampling times as well as the best
proportions of subjects per group can be determined within given continuous intervals. However,
the Simplex algorithm is a general optimization algorithm, not specifically tailored for complex
designs optimization problems that can sometimes occur for population designs. Indeed, for large
optimization problems (several groups with a large number of sampling times), we observed in a
previous work that the Simplex algorithm sometimes converges to local minima [26]. Moreover,
although the optimization may result to proportion of subjects equal to zero for some groups,
optimization of the number of groups to include and the number of samples per group cannot be
easily considered with the Simplex algorithm. Other general algorithms have been proposed for
this purpose, such as nonadaptative random search and simulated annealing but they all appear
to be very cumbersome [26]. A more specific design optimization algorithm, the Fedorov–Wynn
(FW) algorithm [27, 28], has already been used in this context by Mentré et al. [19] and Retout
et al. [20]; it has the property of converging towards the D-optimal design and it can be used
to optimize both the group structure (number of groups, number of subjects per group, number
of samples per group) and the sampling times from a finite set of times. However, as far as we
know, no comparison of the FW algorithm to other optimization algorithms has been performed
and no code is available for a generic use of this algorithm in the context of nonlinear mixed
effects models.

In this article, we extend the population design evaluation and optimization methodology and
illustrate it on the decrease of HIV viral load after initiation of antiretroviral treatment using the
bi-exponential model proposed by Ding and Wu [5]. Despite the large number of ongoing HIV
dynamics studies analysed by nonlinear mixed effects models, the design of those population studies
is still an issue. Wu and Ding [6] evaluated a finite number of plausible designs by simulations. Han
and Chaloner investigated experimental designs for those models using Bayesian evaluations [29].
Wu and Ding [6] also studied the impact of several design strategies on the power for identifying a
treatment difference. Indeed, the evaluation of the efficacy of antiviral treatments is a crucial issue
as well as designing a clinical trial for treatment comparison. A potential good marker for this
efficacy is the first viral decay rate parameter [5]. In the current study, our objective is to propose
a method to predict and to improve with respect to the population design, the power of a Wald
test to detect a treatment effect. Kang et al. have already proposed a method to compute sample
sizes to achieve a given power in the context of nonlinear mixed effect models using linearization
[30, 31]. However, they do not take into account the influence of the estimation of variances of
random effects on the power. Marschner also addressed some statistical issues in the design of
such studies by taking into account those variances of the random effects but in the case of linear
models [32].

We first present the statistical model used for the modelling of HIV viral load decrease
(Section 2). We compare the predicted standard errors (SEs) given by the computation of MF

Copyright 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:5162–5179
DOI: 10.1002/sim



DESIGN IN NONLINEAR MIXED EFFECTS MODELS 5165

with PFIM to those given by a ‘true’ evaluation of MF, obtained by stochastic approximation
using MONOLIX (Section 3). We then investigate the usefulness of using the FW algorithm by
comparison to the Simplex algorithm and we propose a generic implementation of this algorithm in
PFIMOPT, as an alternative to the Simplex algorithm (Section 4). Last, we compute the predicted
power of the Wald test on the first decay rate for a comparison of two treatments using the SE
predicted by PFIM; we investigate the influence of the design on this power and we evaluate by
simulation the relevance of the predicted power (Section 5).

2. MODEL

The decrease of the viral load of HIV-infected patients after initiation of antiretroviral treatment
can be modelled by a bi-exponential model as recommended by Ding and Wu [5]. The statistical
model for a subject i among N at time ti j is therefore given by

yi j = f (!i , ti j ) + "i j

with yi j the log10 viral load of subject i at time ti j and

f (!i , ti j ) = log10(P1i e
−#1i ti j + P2i e−#2i ti j )

!i is the vector of log-parameters for subjects i , composed of the baseline values P1i and P2i and
of the two-phase viral decay rates #1i and #2i , so that !i = (log P1i , log P2i , log #1i , log #2i ). "i j is
the random error and it is assumed that "i j ∼N(0, $2).

Each!i is assumed to be multi-normally distributed with mean % = (log P1, log P2, log #1, log #2)
and a diagonal variance covariance matrix !, such as: !i = % + bi with bi∼N(0, !). We note
&2 = (&2

1, &
2
2,&

2
3, &

2
4) the elements of the diagonal of !, i.e. the vector of the variances of the

random effects.
In case of a study including two groups of treatment A and B, we assume an additional fixed

effect ' for the antiretroviral treatment effect of treatment B compared to treatment A, added on the
first rate constant such as log(#1i )B = log(#1i )A +', so that % = (log P1, log P2, log #1, log #2, ').

The usual assumptions are made: "i |bi , i = 1, . . . , N , are assumed to be independent from one
subject to the other and for each subject, "i and bi are also independent.

The vector " of the population parameters to be estimated in those models, with or without a
treatment effect ', is then composed of the fixed effects %, of &2 and of $2.

3. EVALUATION OF THE POPULATION FISHER INFORMATION
MATRIX USING SAEM

3.1. Method

In this section, we compare for a given design the predicted SE computed by approximation with
PFIM as in Retout et al. [21] with the ‘true’ SE obtained with SAEM. Indeed, Samson et al. [33]
proposed an alternative to the linearization approach for the evaluation of the population Fisher
information based on the SAEM algorithm implemented in MONOLIX and using the Louis’s
principle [34]. Although this evaluation of MF is much more cumbersome and its use cannot thus
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Table I. Comparison of the relative standard errors (per cent), RSE
(per cent), computed for the empirical design with 100 subjects
per group, either by the SAEM procedure or by PFIM using the

bi-exponential viral decay model with a treatment effect.

RSE (per cent)

Parameters PFIM SAEM

ln P1 0.34 0.34

ln P2 0.52 0.57

ln #1 7.9 8.1

' 0.079 0.078

ln #2 1.3 1.3

&2
1 10.9 10.8

&2
2 11.5 12.9

&2
3 10.3 10.4

&2
4 10.4 10.8

$ 3.5 2.8

be envisioned for design optimization purpose, it does not require any linearization and can thus be
considered as the ‘true’ population Fisher information matrix. To do that comparison, we use the
bi-exponential viral load decrease model, including the treatment effect. We evaluate a population
design, called ‘Empirical’ design, composed of two groups of 100 subjects with the same sampling
times (1, 3, 7, 14, 28, 56) days after treatment initiation. We assumed that those two groups differ
only by their treatment. A priori values of the fixed effects are taken as approximately the same as
those used in Ding and Wu [5]: log P1 = 12.0, log P2 = 8.0, log #1 = −0.7 and log #2 = −3.0. We
assume that the treatment effect ' = 0 is estimated and that the variances of the random effects are
equal with a variation coefficient of 55 per cent, which corresponds to &2

1 =&2
2 = &2

3 = &2
4 = 0.3.

Regarding the variance for the error model, we set $ = 0.065 on log10 viral load, which corresponds
to a coefficient of variation of 15 per cent for the viral load.

We evaluate with PFIM the expected SE for the empirical design on the HIV viral load model. We
then use the SAEM algorithm to compute the SE under asymptotic convergence assumption. To do
that, we simulate a data set with a large number of subjects per group: NSIM = 5000 subjects, with
the sampling times of the empirical design. We estimate the parameters and the observed Fisher
information matrix on this simulated data set using the SAEM algorithm. Given the hypothesis
of an identical sampling design for each subject, the Fisher information matrix of the complete
data set is the sum of the individual Fisher information matrices. The SE of N subjects can then
be evaluated from the SE of the simulated data set using: SEN (') =SENSIM(')/

√
NSIM/N . In our

case, we set N = 100 subjects.

3.2. Results

Results are given in Table I. SEs are reported as relative SEs (per cent), noted RSE (per cent). For
all the parameters, the RSE given by PFIM or SAEM are very similar, especially on the treatment
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effect parameter. This confirms the relevance of the predicted SE computed by PFIM. Furthermore,
the very low values of the RSE show that the empirical design is very efficient.

4. FEDOROV–WYNN ALGORITHM FOR DESIGN OPTIMIZATION

4.1. Fedorov–Wynn algorithm

The FW algorithm [27, 28] is an iterative algorithm that maximizes the determinant of the Fisher
information matrix within a finite set of possible designs. We define an elementary design as a
series of sampling times. We briefly describe the algorithm here. Interested readers should consult
Walter and Pronzato book (Chapter 6) for details [18]. Let ( denote, in the following, the set of
elementary designs.

A population design # is defined as a series of n# designs )i in (, where design )i has
frequency *i and

∑n#
i=1 *i = 1. Let n" denote the number of parameters (or dimension) of the

model. Following Walter and Pronzato [18], we denote MF#(", #) the Fisher information matrix
corresponding to # evaluated given the n" parameters ". Let det denote the determinant. For any
elementary design ) in (, and any * between 0 and 1, we can define a new design #′ = (1−*)#+*).
This design has information matrix MF#′ (", (1− *)# + *)) and we define the distance d(#, )) as
the derivative of log(det(MF#′ )) taken at * = 0.

The FW algorithm relies on the Kiefer–Wolfowitz equivalence theorem [35], which states that
the three following proposals are equivalent:

• # is D-optimal;
• max)i in ( d(#, )i ) = n";
• # minimizes max)i in ( d(#, )i ).

The algorithm proposed by Fedorov iteratively improves the population design as follows:

1. we start with an initial guess #0;
2. at step k, with the current design being #k , we find )∗ = argmax)i in ( d(#k, )i )

• we stop if max)i in ( d(#k, )i )!n" + " where " & 1 is a predetermined tolerance;

3. otherwise, we update the design to #k+1 = (1− *∗)#k + *∗)∗, where *∗ is chosen over ]0, 1[
to maximize

det(MF#(", #k+1)) : *∗ = d(#k, )∗) − n"

n"(d(#k, )∗) − 1)

Because this algorithm can only add elementary designs and is thus prone to include more support
points than needed, an additional step is included to optimize the frequencies at step (k + 1),
{*(k+1)

j }. We use an active set method with a projected gradient method for the selection of the
direction as implemented in Mallet [36] for nonparametric estimation in nonlinear mixed effects
models. Elementary designs are removed after this optimization step if their frequency is lower
than a predetermined + (we chose + = 10−8).

The practical implementation requires to specify the set of possible elementary designs (. We
assume first a set ST including nT possible sampling times; these are given by clinical constraints.
Let nS be the desired number of sampling times. We generate the NP = CnS

nT elementary designs
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consisting of nS different times within ST using the library combinat in the statistical software R.
We then generate the Fisher matrices for these NP elementary designs. We start the algorithm
with an initial guess m0 provided by the user.

A program in the C language was written to implement the FW algorithm. It is compiled within
R as a shared library and called through the dyn.load() function. Wrapper functions have been
created within PFIM to handle the call. Users must provide the possible sampling times to use
the FW optimization option. Since the elementary designs are generated through combinatorial
processes, it is possible to specify for instance that each elementary design should include two
points amongst a first set of sampling times (e.g. day one) and a third point amongst a second
set of sampling times (e.g. day two). The user therefore specifies a list of sampling windows, and
for each window, the set of possible sampling times and the minimum and maximum number of
sampling times within that window. Indeed, the number of sampling times nS need not be identical
across subjects; for instance, one may wish to obtain designs with 2–4 observations per subject.
In this case, we generate all the elementary designs corresponding to 2, 3 or 4 points and optimize
across the set of all the designs.

4.2. Designs optimization

The objective of this section is to compare the FW algorithm to the Simplex algorithm in the context
of population designs optimization. We use the example of the bi-exponential model for the viral
load decrease, without any treatment effect, and compare the results of optimization of several
designs to those obtained with the Simplex algorithm already implemented in PFIMOPT 1.0.

We optimize with both the FW and the Simplex algorithm, four different population designs
with 8, 5, 4 and 3 samples per subject, respectively, and for a total number of 480 samples. The
purpose is then to optimize the number of groups to be included, the proportions of subjects per
group and the sampling times. Optimization is performed using the D-optimality criterion for both
algorithms: with the FW algorithm, the determinant of the Fisher matrix is maximized over the
space of possible designs #; its inverse is minimized with the Simplex algorithm.

We use the same a priori values of the population parameters as in Section 3. We use the same
initial designs as starting points for both the FW and the Simplex algorithm. For designs with 5,
4 and 3 samples per subject, they are composed of four groups with one-fourth of the subjects
assigned to each. The 8 samples initial design is composed of only one group.

Regarding the optimization with the FW algorithm, we fix a set of 12 allowed sampling times
similar to those used in Wu and Ding [6]: 0, 1, 2, 3, 5, 7, 10, 14, 21, 28, 42 and 56 days after
treatment initiation. These sampling times were chosen by the authors because of their clinical
feasibility.

Regarding the Simplex algorithm, we optimize the sampling times in a continuous interval from
0 to 56 days. Note that in the case of the Simplex algorithm, optimization of the number of groups is
performed through the optimization of proportion of subjects: this number decreases when one, or
more, proportion of subjects is optimized to 0; it follows that the number of groups cannot increase.
In order that the optimized designs be clinically more relevant, we impose a minimum delay of
1 h between two successive sampling times. Because of the known problems of local minima, two
other initial designs are also tested; moreover, for each of these initial designs, optimization is
performed several times, using iteratively the obtained optimal designs as the new initial designs
for the next optimization. The optimized design with the best criterion is then selected as the
result for the optimization with the Simplex algorithm. From this optimized design, we derive the
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Figure 1. Comparison of the predicted RSE for designs with either 8, 5, 4 or 3 samples and optimized
with either the Fedorov–Wynn algorithm (full bar) or the Simplex algorithm (open bar).

number of subjects from the optimized proportions and round them to the nearest integer. Last, in
order to get more practical designs, we round the sampling times to the nearest day.

The comparison of the optimized designs with both algorithms is based on the compari-
son of their efficiency and the comparison of their group structure and the optimal sampling
times. The usual efficiency criterion $D(#) is defined as the determinant of MF(", #) normal-
ized by n", the dimension of ", the vector of the population parameters to be estimated, i.e.
$D(#) = [det(MF(",#))]1/n" . The efficiency of a design #1 compared to a design #2, Eff(#1, #2),
is then computed by the ratio of the efficiency criteria for both designs, i.e.:

Eff(#1, #2) = $D(#1)

$D(#2)

4.3. Results

Optimized designs with their corresponding efficiency criterion $D(#) are given in Table II for both
algorithms; the corresponding RSE are reported in Figure 1. All the results with the FW algorithm
have been obtained after only one optimization run while the Simplex algorithm required to be
run several times (about 2 or 3 times) for each initial population design to converge towards a
minimum.
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Whatever the constraints on the number of subjects, both algorithms give optimized designs
with similar criteria, although slightly lower for the FW algorithm, meaning that both algorithms
generate designs supporting globally the same information. This is confirmed by the comparison
of the predicted RSE given in Figure 1: whatever the optimization case (8, 5, 4 or 3 sam-
ples per subject) and the parameter, the expected RSE are very similar for the two optimization
algorithms.

Optimized designs with either 5, 4 or 3 samples per subject allow globally the same level of
information with a range of efficiency criteria from 639.8 to 647.6. Optimized designs with 8
sampling times are less efficient with an efficiency criterion of 478.0 for the FW algorithm and
483.3 for the Simplex algorithm. Globally, all these designs are very informative with expected
RSE lower than 10 per cent for the fixed effects and lower than 20 per cent for the random effects
parameters.

For the optimized sampling times (Table II), there are some differences between both algorithms.
This was foreseeable due to the finite set of allowed sampling times for the FW algorithm: for
instance the 17 days sampling time occurs in all the designs optimized with the Simplex algorithms
but was not in the set of times used for the FW.

Regarding the group structure for designs with 5 samples per subject, both algorithms reduce
the initial 4 groups design to only one group. The same group structure is obtained for designs
with 8 samples per subject. When the number of samples per subject decreases (4 and 3), this
group structure is more complex with at least 3 groups for the Simplex algorithm, and 4 for the
FW algorithm.

5. INFLUENCE OF THE DESIGN ON THE POWER OF THE WALD TEST
OF A TREATMENT EFFECT

5.1. Computation of the power of the Wald test and number of subjects needed to treat

Nonlinear mixed effects models also allow comparison of two treatment groups, testing a treatment
effect on some of the fixed effects of the model. The Wald test can be used to assess this difference
between the two groups. In this section, we aim at computing the power of the Wald test using
the predicted SE of PFIM. We use the example of the bi-exponential viral load decrease with a
treatment effect ' on the first slope. We assume that the clinical trial aims to detect a minimum
difference of at least '1 between the two treatment groups on the parameter #1. Hence, the null
hypothesis to test is H0 : {'= 0} while the alternative hypothesis is H1 : {'"'1}. The statistic
of the Wald test is SW('̂) = '̂/SE('̂) where '̂ is an estimate of ' and SE('̂) the corresponding
SE. To ensure a type I error * for the Wald test under H0, the rejection region is {|SW|>z1−*/2},
where z1−*/2 is the critical value of a standard normal distribution. Under H1, the statistic SW('̂)
is asymptotically distributed with a normal distribution centred on '1/SE('1) where SE('1) is the
predicted SE for the treatment effect ' when ' = '1. Therefore, the power P of a Wald test is
defined as

P = 1 − $
(
z*/2 − '1

SE('1)

)

for '1>0 where $(z) is the cumulative distribution function of the standard normal distribution
and z*/2 is such that $(z*/2) = 1 − */2.
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Using the extension of PFIM for discrete covariate [21] as in Section 2, we derive the expected
SE of ' under the alternative hypothesis ' = '1 and can thus evaluate the expected power of this
Wald test for a given design and a given value '1 of the alternative hypothesis H1.

Using the predicted SE of PFIM, we can also derive the number of subjects needed to achieve
a power P to detect a treatment effect with the Wald test. To do that, we first compute the SE
needed on ' to obtain a power of P , called NSE(P), using the following relation:

NSE(P)= '1
z*/2 − $−1(1 − P)

We then compute the number of subjects needed to be included to obtain a power of P , called
NNI(P) using

NNI(P) = N ×
(

SE('1)
NSE(P)

)2

with N the initial number of subjects in the design and SE('1) the corresponding predicted SE of
' for the same design with N subjects.

As an illustration of this method, we consider as in Section 2 two groups of 100 patients with
the same elementary design (1, 3, 7, 14, 28 and 56) days after treatment initiation and derive
the power of the Wald test for an alternative hypothesis increasing the first slope by 30 per
cent, i.e. '1 = 0.262. We found that SE('1) = 0.079 and the expected power computed for a type
I error * = 5 per cent is thus of 92 per cent. We also investigate the influence of the number
of subjects (40 or 100 per group) and of the value of the alternative hypothesis on the power:
increase of the first slope by 30 per cent ('1 = 0.262) or 50 per cent ('1 = 0.405). According
to the value of the increase, the influence of the number of subjects is different. Indeed, for
an increase of 30 per cent, the predicted powers are of 55 per cent for 40 subjects per group
and 92 per cent for 100 subjects per group, whereas an increase of 50 per cent involves less
difference: a predicted power of 90 per cent for 40 subjects per group versus 99 per cent for 100
subjects.

For a same type I error * = 5 per cent and an increase of the first slope of 30 per cent, we
compute that only 72 subjects per group are needed to achieve a power of 80 per cent.

5.2. Design optimization to improve the power

In this section, we investigate the influence of the design on the expected SE of the treatment
effect and thus on the expected power.

We optimize with the FW algorithm designs with either 6, 5 or 4 samples per subject, called
Opt6, Opt5 and Opt4, respectively, for the bi-exponential HIV viral load decrease model including
the treatment effect '. We fix the total number of samples to 480 and we impose identical designs
in both the groups. We assume for the alternative hypothesis an increase of the first slope by 30
per cent, i.e. '1 = 0.262. For each optimized design, the corresponding power of the Wald test
for ' is computed from the SE predicted by PFIM. We also compute the number of subjects and
the total number of samples needed to achieve a power of 80 per cent for a type I error * = 5
per cent. We then compare these numbers between the designs to investigate the influence of the
group structure on the number of subjects needed.

Designs optimized with the FW algorithm for the model with the treatment effect are given in
Table III, as also the number of samples and the number of subjects needed per group. Globally,
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Figure 2. Histograms of the relative SE (per cent) estimated by nlme on the treatment effect ' on the 997,
950 and 727 converged data files for Opt6, Opt5 and Opt4, respectively. The dotted line represents the

empirical RSE, and the full line the expected RSE from PFIM.

for the same total number of 480 samples, designs with less samples per individual but more
subjects are more efficient, even if the gain in efficiency is small. Moreover, as in Section 4, the
group structure is more complex when the number of individual samples decreases with only one
group for Opt6 and Opt5 to three groups for Opt4.

Regarding the estimation of the treatment effect, the SE predicted from PFIM decreases when
the number of subjects increases. The same pattern is then observed for the power computed from
this predicted SE: design optimized with 40 subjects (Opt6) leads to a predicted power of the Wald
test of only 55 per cent, whereas design optimized with 60 subjects (Opt4) leads to a predicted
power of 73 per cent.

To achieve the power of 80 per cent, the Opt6 design would require nearly two (about 1.8)
times more samples than the initial total number of samples (845 versus 480 samples). Moreover,
for a similar number of subjects per group (about 70), design Opt4 could achieve this power of
80 per cent but with a lower total number of samples compared to Opt6 or Opt5.
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Figure 3. For each optimized designs, comparison between the predicted power obtained by PFIM (full
bar) and the power of the Wald test estimated by simulation (open bar) on the converged data files

(997, 950 and 727 for Opt6, Opt5 and Opt4, respectively).

5.3. Evaluation of the expected powers by simulation

For each optimized design of the previous section, a simulation is performed to investigate the
relevance of the power predicted using PFIM. To do that, we simulate with R (version 1.9.0)
1000 data sets using the bi-exponential HIV viral load decrease model under H1 with '1 = 0.262.
We then use the nlme function of Splus to estimate the population parameters on each replicated
data sets, using two different sets of initial parameters. The first set is the same as the one used
for the simulation except for the treatment effect which is set to 0; the second one is log P1 = 5,
log P2 = 2, log #1 = − 1, log #2 = − 0.1 and ' = 0. Selection of the best run from those two initial
sets of parameter values is performed based on the best log-likelihood. For each simulated design,
we also recorded the number of data sets for which nlme failed to converge.

From the K converged nlme estimations, we compare the expected SE given by PFIM to the
distribution of the K SE computed by nlme on each population parameter, with a focus on the
treatment effect parameter '. We also compare the expected SE to the empirical SE, defined as
the sample estimate of the standard deviation from the K parameter estimates.

Last, the observed power of the Wald test for the treatment effect is computed on the simulations
as the proportion of trials for which H0 is rejected, and is compared to the power computed from
the expected SE of PFIM.

Convergence is obtained for 99.7 and 95.0 per cent of the files for designs Opt6 and Opt5. This
rate is much lower for designs Opt4 with 72.7 per cent, even using the two sets of initial parameter
values.

The predicted RSE, the empirical RSE and the distribution of the RSE computed by nlme for
the treatment effect parameter ' are reported in Figure 2 for each optimized design. For each
design, the distribution of the RSE obtained by nlme and the empirical RSE are in the same range;
moreover, empirical RSE and predicted RSE from PFIM are very close. Globally, empirical RSE
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and observed RSE confirm the influence of the design on the SE already showed with PFIM: for
the same total number of samples, lower SE are obtained with higher number of subjects.

The power observed by simulation and the predicted power computed by PFIM are reported in
Figure 3 for each optimized design. Globally, they are similar, especially for Opt6 and Opt5. There
is more discrepancy for Opt4 with fewer samples per subject but the prediction is still very good;
it should be noticed that for this design, because of the lower rate of convergence of estimation
on the simulated data files, the observed power is may be less reliable, not taking into account
runs without convergence and may be thus overpredicting the power. Moreover, for the same total
number of samples, the increase in the power, observed with PFIM when the number of subjects
increases, is confirmed by the simulation.

6. DISCUSSION

In this paper, we first showed the relevance of the predicted SE computed by PFIM by comparison
to those given by the SAEM algorithm, even on the treatment effect parameter. We thus illustrated
the usefulness of using PFIM to predict SE and to optimize designs, as an alternative to the much
more cumbersome SAEM algorithm. Indeed, the evaluation of the expected SE for the empirical
design was performed in a very short computing time with PFIM (less than 1s) compared to SAEM
(about 42 min). All the computations of this paper were performed on a Pentium 4 3.20 GHz PC
with the Windows operating system.

We then proposed a generic implementation of the FW algorithm and demonstrated its usefulness
on the bi-exponential viral load model. Compared to the Simplex algorithm, optimizations were
faster and much more robust, without any need for several runs with different initial designs.
For example, optimization of the design with 5 samples per subject took about 175 s with the
Simplex algorithm for one initial design whereas the same optimization requires about only 12 s
with the FW algorithm. For this algorithm, the larger the set of admissible sampling times, the
longer the time required for the method but not for the optimization process itself. Indeed, the
computing time is almost proportional to the time needed to compute the Fisher information matrix
for each possible elementary design, defined as any combination of the sampling times; the time
for the optimization algorithm itself being negligible. For the design with 5 samples per subject
and 12 admissible sampling times, 792 Fisher information matrices were computed in 12 s, i.e.
computation of one matrix in 0.015 s. Optimization with a larger set of admissible sampling times
would then require an addition of about 0.015 s for the computation of the Fisher matrix of each
new possible elementary design. Here, for instance, for 16 admissible sampling times the total
run-time was 67 s, which is still less than the time for the Simplex algorithm.

The specification of a finite set of sampling times with the FW algorithm can be viewed as a
great advantage from a clinical point of view. Indeed, the user can specify the clinically feasible
sampling times and optimize a design among them. Optimization within continuous intervals of
times as with the Simplex algorithm can be more questionable: the algorithm can, sometimes during
a long time, pursue the optimization by exchanging at each iteration one or several sampling times
by some others which differ from the previous by only few seconds. This greatly slows down the
whole optimization process and has absolutely no relevance in clinical practice.

However, although the designs obtained with both the Simplex and the FW algorithms carried
a similar amount of information, the group structure was sometimes more complex with the FW
algorithm, involving an additional group in the case of 4 and 3 samples per subject. One explanation
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could be the lack of flexibility in the admissible sampling times compared to the Simplex algorithm.
To compensate the lack of some crucial times, such as the 17 days sampling times contained in the
four optimized designs with the Simplex algorithm, the FW algorithm may increase the number of
groups, adding sampling times surrounding the optimal one. Nevertheless, this 17 days time was
not in the set of feasible sampling times and although the FW algorithm may involve optimized
designs with a slightly more complex group structure and a minor loss of information compared
to the Simplex algorithm, it may have a major gain of clinical feasibility.

Using the predicted SE of PFIM we computed also the predicted power of the Wald test to
detect a treatment effect as well as the number of subjects needed to treat to achieve a given power,
using the same method as in [30, 31] but taking into account the whole population parameters,
including parameters for the variances of the random effects. We showed the influence of the design
on the power, emphasizing that, for optimized designs, the power increases when the number of
subjects increases and the number of samples per subject decreases. We confirmed these results by
simulation and showed the relevance of the predicted power computed from the SE of PFIM. In
practice, optimization of both the design (group structure and sampling times) and the number of
subjects needed to achieve a given power can be computed in two steps. Indeed, the FW algorithm
performs a statistical optimization, involving those optimal group structures and sampling times
that are independent from the total number of subjects. Users can first optimize the design, and
then, based on the obtained SE for the treatment effect parameter, derive the number of subjects
needed to obtain the needed SE to achieve the required power.

We focused on the computation of the power for the detection of a treatment effect on the first
viral decay rate parameter in the context of HIV viral load decrease using a bi-exponential model.
In this context, tests on other parameters could of course be performed; for instance, Samson
et al. [33] found a significant difference between two treatments given in a real clinical trial;
the significant treatment effect was detected on the second viral decay rate although a treatment
effect on the first rate was also tested. Moreover, simple values of the parameters were taken in
this illustration, and real applications should consider much more relevant values obtained from
previous studies. Last, although this study demonstrates that the optimal population design method
allows derivation of efficient designs even with a low number of samples per subjects, further
illustrations of the interest of that method would be to derive optimized designs for more complex
and realistic HIV dynamics models using differential equations systems [37, 38].

Regarding the optimization methodology, we used the D-optimality criterion, looking at an
efficient design for the whole parameter estimates. However, in the case of population designs
optimization to improve the power, other criteria could be used to answer to this precise objective,
such as the DS-optimality criterion for the precision of estimation of some of the parameters only,
for example, the treatment effect, and putting less weight on other less interesting parameters.

Last, we considered only a diagonal variance of the random effects; however, in practice, one
may want to allow correlation between the random effects. Expression of the Fisher information
matrix has been proposed in this case [19] but has not been yet implemented in PFIM and would
certainly considerably increase the computing time because of the increased dimension of the
Fisher matrix due to the estimation of these covariances.

A new version, PFIM 2.1, developed in R 2.4.1, is available at www.bichat.inserm.fr/equipes/
Emi0357/download.html. It includes PFIM 1.2 and PFIMOPT 1.0 for population design evaluation
and optimization, as well as for new extensions: optimization can be performed using either the
Simplex algorithm or the FW algorithm; models can be entered either with analytical equations or
using a system of differential equations; finally, a library of pharmacokinetics models is provided.
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To conclude, the present study further illustrates the relevance of the Fisher information matrix
in nonlinear mixed effects models, even for models including treatment effect parameters. We
show the great potential of PFIM to optimize population designs, as well as to control and improve
the power of the Wald test.
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24. Mentré F, Dubruc C, Thenot JP. Population pharmacokinetic analysis and optimization of the experimental design
for mizolastine solution in children. Journal of Pharmacokinetics and Pharmacodynamics 2001; 28:299–319.
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