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Abstract

In this paper, we focus on the design of Markov Chain
Monte Carlo techniques in a statistical registration frame-
work based on finite element basis (FE). Due to the use of
FE basis, this framework has specific features. The main
feature is that displacement random fields are markovian.
We construct two hybrid Gibbs/Metropolis-Hasting algo-
rithms which take fully advantage of this markovian prop-
erty. The second technique is defined in a coarse-to-fine
way by introducing a penalization on the sampled posterior
distribution. We present some promising results suggesting
that both techniques can accurately register images. Exper-
iments also show that the penalized technique is more robust
to local maxima of the posterior distribution than the first
technique. This study is a preliminary step towards the esti-
mation of model parameters in complex image registration
problems.

Note: This preprint is published in the CVPR Work-
shop on Image Registration and Fusion, June 23, 2007;
Minneapolis, Minnesota, USA

1. Introduction
Researchs on Image Registration are among the most ac-

tive of Image Processing (see [1] for a review). Since early
works at the end of 80’s, numerous models have been pro-
posed to deal with a wide variety of registration problems
encountered in practice (large deformations, multimodality
registration, class-dependant registration, template registra-
tion, ...). There is however very few literature on how to
select and adapt registration models to data of a specific ap-
plication. Model adaptation and selection is a crucial prob-
lem which is still open.
In [2], Glasbey and Mardia set up a stochastic frame-

work based on a penalized likelihood approach in which
some model parameters (penalization weight, template) are
adapted to data by a statistical estimation. More recently,
Allassonniere and colleagues propose a Bayesian statistical

framework in which they define a consistent estimator of
model parameters (stiffness matrix, template, image noise
variance) [3, 4]. In [3], the estimation technique is based
on a stochastic version of the EM algorithm [5] known as
SAEM (Stochastic Approximation Expectation Maximiza-
tion) in the Statistics community. SAEM algorithm in [3]
contains a simulation step in which displacements are sam-
pled from a probability distribution using a Markov Chain
Monte Carlo technique (MCMC). MCMC techniques are
used because the probability distribution does not have an
analytic form and cannot be sampled directly. The design
of MCMC in SAEM is a critical issue, especially when con-
sidering highly complex image registration problems.
In this paper, we focus on this issue. We present first in-

vestigations into a particular statistical framework based on
finite element basis (FE). Due to the use of FE basis, this
particular framework has several specific features which we
enlighten and take advantage of. The main feature of the
FE-based framework is that displacement random fields are
gibbsian and markovian. This is also the case in the frame-
work based on finite differences in [6], but not for common
frameworks based on spectral decompositions [7].
The markovian property enables to define MCMC tech-

niques by combining Metropolis-Hastings (MH) and Gibbs
procedures. We construct two hybrid MH/Gibbs techniques
and apply them to the registration problem defined as a
Maximum A Posteriori estimation. We test and compare
the two techniques on some synthetic data.

2. Variational framework
2.1. Problem Formulation
In practice, bidimensional images are observed on reg-

ular grids G = {1, · · · , N1} × {1, · · · , N2} of size ng =
N1N2. Any observed image y is thus described by a set of
gray-level values yn at positions n = (n1, n2) of G. For
deforming an image y, it is however necessary to represent
it as a function defined on a connected domain. Hence we
extend the definition of any discrete image y on the domain
D = [0, N1]× [0, N2], by setting f(1/2 + n1, 1/2 + n2) =

1



yn for all n = (n1, n2) of G and interpolating f on the
whole domainD. Here, we use a bilinear interpolation tech-
nique and have continuous images f .
An image f defined on D is registered to another image

g using coordinate changes. A coordinate change φ is a con-
tinuous and invertible function (an homeomorphism) map-
ping the image domainD onto itself. A coordinate change φ
induces a geometrical deformation fφ of an image f which
is defined as fφ = f ◦ φ. Coordinate changes φ are also
called deformations and can be decomposed as φ = id + u,
where id is the identity function and u are displacements.
The registration problem consists of finding a map φ which
makes the deformed image fφ and the target image g as
similar as possible. This is usually formulated in terms of
an inverse problem: find a displacement u in a functional
space V which minimizes an energy of the form

E(u) = S(fid+u, g) + R(u). (1)

The energy is composed of two terms. The first term S
defines the image similarity criterion and is as low as the
deformed image fid+u and the target image g are similar.
Here, S is the usual distance on L2(D)

S(f, g) =
1

2

∫

D
(f(x) − g(x))2 dx =

1

2
|f − g|2D. (2)

The second term is a regularization term which ensures that
the problem is well-posed in the space V . It is usually of
the form R(u) = 1

2a(u, u), where a(·, ·) is a bilinear form
on V . In this paper, R is the strain energy of linearized
Elasticity, defined as

R(u) =
1

2

∫

D
λtr2(e(u)) + 2µ tr(e(u)T e(u))dx, (3)

where λ and µ are Lame constants and e(u) is the lin-
earized strain tensor e(u) = 1

2 (∇uT + ∇u). We set
V = H1(D) × H1(D), where H1(D) is an usual Sobolev
space on D and assume homogeneous Dirichlet boundary
conditions (u(x) = 0 on the boundary of D).
The minimization problem described by Equation (1) is

commonly solved using a Riesz technique. Such a tech-
nique consists of defining approximate problems in some
finite-dimensional subspaces Vh of V spanned by a family
of elements of V . Spectral techniques [7] and finite element
methods are two different kinds of the Riesz method.

2.2. Finite Elements
The finite element method enables to construct approx-

imation subspaces Vh [8]. The construction of Vh is fun-
damentally based on a triangulation of the domain D. A
triangulation of the domain D is a set T h composed of
non-overlapping triangular or rectangular subregions of D
(called finite elements) which cover the whole domain D.

Deformation spaces Vh built with the finite element method
have several specific properties: (i) the restriction of any el-
ement of Vh to a finite element is polynomial, (ii) elements
of Vh are continuous (or even continuously differentiable),
(iii) there exists a finite-dimensional basis of Vh composed
of functions which have small supports limited to a few fi-
nite elements.
We now give a construction of a space Vh using P1-

Lagrange rectangular finite elements. Let us fix a finite el-
ement size h dividing N1 and N2. The domain D is tri-
angulated by rectangular finite elements te = [e1, he1] ×
[e2, he2] defined for indices e = (e1, e2) of the set Kh =
{0, · · · , N1/h−1}×{0, · · · , N2/h−1}. We order vertices
of all finite elements in an index set N h of size nv. Given
a vertex sk for k in N h, we denote by Tk = {e ∈ Kh, sk ∈
te} the index set of all finite elements it belongs to. Given a
finite element te, we denote by Oe = {k ∈ N h, sk ∈ te},
the index set of all vertices which belongs to te. We denote
by vk = (vk1, vk2)T the displacement vector at a vertex
position sk.
We state that the components of restrictions u|te

of any
function u of Vh on any element te are both bilinear, i.e.
of the form a0 + a1x1 + a2x2 + a3x1x2. It is well-known
that restrictions u|te

of u on te are characterized by values
of u at the vertices of te. Furthermore, the restriction u|te

can be expressed as u|te
(x) =

∑

k∈Oe

∑2
i=1 vki ue

ki(x),
where the ue

ki are eight local basis functions (called shape
functions) having support on te. On the whole domain D,
displacements u of Vh can be expressed in a basis of nh =
2nv functions. Each of these functions are associated to a
vertex sk and are defined for all k ∈ N h and i ∈ {1, 2}
from the local basis functions as uh

ki =
∑

e∈Tk
ue

ki. We
have

Vh = {u(x) =
∑

k∈Nh

2
∑

i=1

vki uh
ki(x), v ∈ R

2nv}. (4)

The elements of Vh are continuous on D. When ex-
pressed in the subspace Vh, the minimization problem be-
comes: find a coefficient vector v = (vk)k∈Nh in Rnh

which minimizes a discrete energy of the form

Eh(v) = Rh(v) + Sh(v), (5)

whereRh and Sh are discrete versions of R and S

Rh(v) =
1

2
vTΓhv and Sh(v) =

1

2
|fv − g|2D. (6)

In this expression, fv denotes the deformed image f(id +
∑

k∈Nh

∑2
i=1 vki uh

ki) and Γh is a nh × nh-matrix (called
the stiffness matrix) whose elements Γh

(ki;lj) = a(uh
ki, u

h
lj)

for all k, l ∈ N h and i, j ∈ {1, 2}.
Besides, the support of the basis functionuh

ki is restricted
to the finite elements which the vertex sk belongs to (i.e.



∪e∈Tk
te). Hence, the inner product a(uh

ki, u
h
lj) = 0 when-

ever the vertices sk and sl are not on a common finite ele-
ment. As a consequence, the stiffness matrix Γh is sparse
and the stiffness term Rh(v) in the energy Eh(v) can be
simplified as follows

1

2

∑

k∈Nh

2
∑

i,j=1

vkiΓ
h
(ki;kj)vkj+

∑

k∈Nh

∑

l∈Nk

2
∑

i,j=1

vkiΓ
h
(ki;lj)vlj ,

where Nk denotes the set of vertices which are different
from sk and on a same finite element as sk. Furthermore,
the similarity term Sh(v) in Equation (5) can be decom-
posed as a sum of local integrals on finite elements

1

2

∑

e∈Kh

∫

te

(f(x +
2

∑

i=1

∑

k∈Oe

vki ue
ki(x)) − g(x))2dx.

The similarity energy can also be written in a discrete form
Sh

d (v) as

1

2

∑

e∈Kh

∑

n∈G,xn∈te

(f(xn +
2

∑

i=1

∑

k∈Oe

vki ue
ki(xn)) − yn)2,

where xn = (n1 + 1/2, n2 + 1/2) and yn = g(xn).

3. Stochastic Framework
3.1. Problem Formulation
In the remaining of the text, we will denote random vari-

ables or fields with upper cases and deterministic compo-
nents or random realizations with lower cases. An usual
stochastic representation of deformations can be obtained
using displacement decompositions in subspaces Vh. Let
Vh be defined as in Section 2.2 and V = (Vk)k∈Nh be a
centered Gaussian vector with covariance matrix Σ. For
any fixed position x of D, we define a random vector
U(x) =

∑

k∈Nh

∑2
i=1 Vkiuh

ki(x). The collection U =
(U(x), x ∈ D) is a Gaussian vector-valued random field on
D which is characterized by a covariance structure depend-
ing only of the matrix Σ and elements uh

ki. The distribution
law of the Gaussian vector V will be called the prior defor-
mation distribution and denoted by π(v;Σ). An observed
image can be represented as a collection Y = {Yn, n ∈ G}
of random variables defined on all sites of the grid. Such
a collection is as a random field on G. We assume that the
target image Y is a random field on G and that it depends
statistically on deformations and a fixed image f defined on
D. This dependency is defined through the following statis-
tical model

∀ n ∈ G, Yn = f(xn +
∑

k∈Nh

2
∑

i=1

Vkiu
h
ki(xn)) + Bn, (7)

where the Bn are ng independant centered Gaussian vari-
ables with variance σ2. The density function representing
the distribution of image observations given deformations
and a fixed image f is called the conditional density and
denoted by p(y|V ; f,σ). The density function of displace-
ments given images is called the posterior distribution and
denoted by p(v|y; f,σ,Σ). This distribution can be derived
from the prior deformation distribution and the conditional
distribution using a Bayes formulae

p(v|y; f,σ,Σ) =
p(y|v; f,σ)π(v;Σ)

∫

p(y|V = w; f,σ)π(w;Σ)dw
. (8)

In this framework, the registration problem can be formu-
lated in terms of a Maximum A Posteriori (MAP or poste-
rior mode) problem [7, 2]: given an observed image y and
a reference image f , find a deformation v̂MAP which maxi-
mizes the posterior density distribution p(v|y; f,σ,Σ).
Now, consider a discretization Eh

d of the energy Eh in
Equation (5)

1

2
vTΓhv +

1

2

∑

n∈G

(f(xn +
∑

k∈Nh

2
∑

i=1

Vkiu
h
ki(xn)) − yn)2.

If we set Γh = Σ−1 and σ = 1, we can notice that
− log(p(v|y; f,σ,Σ)) = Eh

d (v) + c(Σ), where c(Σ) is a
constant depending only on Σ. Hence the minimization
problem defined by Equation (5) and the MAP problem can
be considered as two similar problems.
In the remaining of the paper, we take the posterior den-

sity function defined from discrete energies Rh and Sh
d in

Equation (6) as

p(v|y; f,σ,Σ) =
1

Z
exp(−Rh(v) −

1

σ2
Sh

d (v)), (9)

where Σ−1 = Γh and Z is a normalization constant de-
pending on σ and Σ. In the next section, we focus on the
properties of local displacement interactions on vertices.

3.2. Markov Random Field definition
We define a neighbor system on the vertex set N h: we

state that two vertices sk and sl are neighbors if and only
if k (= l and sk and sl are on a common finite element
te. The index set of neighbors of sk corresponds to the set
denoted Nk in Section 2.2. The set N h equipped with the
neighbor system is a graph. Cliques of the graph are subsets
of N h which are either singletons (single elements of N h)
or composed of pairwise-neighbor elements. In the graph,
clique orders are below four, since there are only four ver-
tices defining a finite element. Cliques of order four are the
sets formed by vertices of a finite element te. These sets are
denotedOe in Section 2.2.



We notice that the posterior distribution defined by Equa-
tion (9) is of the form

1

C
exp





∑

k∈Nh

Pk(v) +
∑

k∈Nh

∑

l∈Nk

Pkl(v) +
∑

e∈Kh

Pe(v)



 ,

where potentials Pk(v) = − 1
2

∑2
i,j=1 vkiΓh

(ki;lj)vkj de-
pend only on values of v on a singleton k, potentials
Pkl(v) = −

∑2
i,j=1 vkiΓh

(ki;lj)vlj on values on a clique of
order 2 and potentials Pe(v) = − 1

2σ2

∑

n∈G,xn∈te
(f(xn +

∑

i

∑

k∈Oe
vki ue

ki(xn))−yn)2 on values on a clique of or-
der 4. In other words, the posterior density has a Gibbs form
(with respect to the neighbor system). Hence, according to
the Hammersley-Clifford theorem [9], the field V given Y
is a Markov field with respect to the neighbor system. This
means that displacements on a vertex depend only on those
on neighbor vertices and that laws governing displacement
interactions on vertices are local. The Markovian property
of the field directly results from the fact that shape func-
tions uh

ki have small supports and that the stiffness matrix
Γ is sparse. In [7], shape functions derived from spectral
decomposition have not a local support and consequently,
the similarity term cannot be defined as a sum of local po-
tentials.

4. MAP estimation
4.1. MCMC techniques
Due to the Bayes formula in Equation (8), solving the

MAP problem is equivalent to finding a deformation max-
imizing p(y|V = v; f,σ)π(v;Σ) with respect to v. When
the posterior distribution does not have a simple analytic
form, finding its mode may be difficult or even impossi-
ble. In such cases, one can alternatively simulate a sample
(v(t))t=1,...,T from the posterior distribution using Markov
Chain Monte Carlo (MCMC) techniques and then estimate
the MAP as the sample mode. The MCMC technique prin-
ciple consists of simulating an ergodic Markov chain with
stationary distribution p(v|y; f,σ,Σ) [10, 11]. The most
popular MCMC techniques are the iterative Gibbs sampler
and the Metropolis-Hastings (MH) algorithm, which ensure
the existence of a transition kernel such that the stationary
distribution of the generated Markov chain is the target dis-
tribution p(v|y; f,σ,Σ).
The Metropolis-Hastings algorithm is commonly used

when it is not possible to sample directly from the con-
ditional probability. The MH algorithm is fundamentally
based on a so-called instrumental distribution qt fromwhich
it is possible to sample. In our MAP context, a MH algo-
rithm will typically proceed as follows.

1. Initialization of v(0).

2. Iteration t, t ≥ 1.

• Sample v′ ∼ qt(v(t−1), v′).
• Evaluate the acceptance probability

ρt(v
(t−1), v′) = min

(

p(v′|y)

p(v(t−1)|y)

qt(v′, v(t−1))

qt(v(t−1), v′)
, 1

)

.

• Sample a realization u of an uniform law on
[0, 1]. If u ≤ ρt(v(t−1), v′) then set v(t) = v′,
otherwise set v(t) = v(t−1).

3. Set t = t + 1 and go to step 2).

The choice of the instrumental distribution q in MH al-
gorithm is a critical issue. Although the convergence of the
MH algorithm is ensured under some generic assumptions
on q [10], the rate of convergence depends strongly on q and
can be very slow. Intuitively, an instrumental distribution q
will be efficient whenever it samples candidates in regions
where the posterior density is the highest.
One could simply choose an instrumental distribution

q which changes v′ globally on all vertex points. The
two classical instrumental distributions are (i) q(v′; v) =
π(v′;Σ), the prior deformation distribution, leading to an
independent MH algorithm, and (ii) q(v′; v) such that v′ =
v + η where η is sampled from centered multivariate Gaus-
sian distribution (random walk). The random walk scheme
which samples new candidate v′ depending on current dis-
placements v, is known to be more efficient than indepen-
dent MH algorithms. However both approaches are not rel-
evant in our context. Indeed, due to the large number of
vertex points, the chance to accept a new candidate is very
low. Consequently, theMarkov chain converges very slowly
towards its stationary distribution. Moreover, whenever the
posterior distribution is higher for a new displacement can-
didate v′ than for current displacements v, displacements
are completely updated without taking into account possi-
ble values vk of v which are more likely than v′k from a
local viewpoint. For these reasons, we believe it is prefer-
able to sample new candidates v′ which differ from v only
on a few vertices. Hence, in the next section we propose
a local version of the MH algorithm which is based on a
Gibbs sampler. Here, the use of a Gibbs sampler is feasi-
ble and efficient due to the markovian properties of random
fields.
Besides, the convergence of MCMC techniques strongly

depends on the initialization if the posterior distribution
p(v|y; f,σ,Σ) has several local maxima. In such cases,
similarly to a simulated annealing scheme [9], a penalized
MH algorithm (PMH) can improve the convergence towards
the global maximum. Such an algorithm is based on a pe-
nalization βt > 0 depending on time t. A PMH is a sim-
ulation of a non-homogeneous Markov chain with a tar-
get penalization-dependentdistribution pβt

(v|y; f,σ,Σ). In



PMH, the choice of the initial penalization β0 and the se-
quence of penalization is a critical issue. The definition of
the penalized distribution is also important. All these points
will be discussed in the next section.

4.2. Hybrid Gibbs-MH algorithms
In this paper, we use a Gibbs sampler-random walk

scheme for sampling new candidates. Let sk be a fixed ver-
tex (k ∈ N h), a new candidate is sampled by setting v′l = vl

for l (= k and v′k = vk + η, where η = (η1, η2)T are two in-
dependent realizations of a centered Gaussian random vari-
able with standard deviation δt > 0. We denote by qt

k(v, v′)
the instrumental law corresponding to this scheme at itera-
tion t. This law is symmetrical (qt

k(v, v′) = qt
k(v′, v)). We

define a Gibbs sampler based on this random-walk scheme.

1. Initialization. Set v(0) = (0).

2. Iteration t, t ≥ 1. For all vertex indices k ∈ N h,

• Define the current displacement w as
wl = v(t)

l , l < k and wl = v(t−1)
l , l ≥ k,

• Sample v′ ∼ qt
k(w, v′).

• Evaluate the acceptance probability

ρt(w, v′) = min

(

pβt
(v′|y)

pβt
(w|y)

, 1

)

.

• Sample a realization u of an uniform law on
[0, 1]. If u ≤ ρt(w, v′) then set v(t)

k = v′k, other-
wise set v(t)

k = v(t−1)
k .

3. Set t = t + 1 and go to step 2).

Due to markovian properties, the computation of the
acceptance probability ρt(w, v′) depends only on the dis-
placement values of the vertex k and its neighbors.
We implemented two versions of this algorithm which

differ in the choice of sequences of the scaling parameter
δt and the penalization βt. In the first version (refer to as
MH, for Metropolis-Hasting algorithm), scaling parameter
and penalization are constant for all iterations t > 0. In the
second version (refer to as PMH, for penalized Metropolis-
Hastings algorithm), the scaling parameter and the penal-
ization vary with iterations.
In PMH, the scaling parameter and penalization se-

quences are defined in such a way that (i) during first iter-
ations the algorithm attempts coarse image difference cor-
rections with large displacements and (ii) as iterations in-
crease, it tries more and more accurate corrections. Such an
approach is analogous to the coarse-to-fine strategies which
are commonly implemented in gradient descent algorithms.
According to this strategy, the scaling parameter sequence

is defined so that large displacements η are proposed dur-
ing first iterations and as iterations increase, displacements
become smaller and smaller: δt = δmaxτt + δmin(1 − τt),
where δmin and δmax are lower and upper bounds for δt

variations and τt = (0.985)t. The sequence of τt is cho-
sen so that the algorithm spends more time in correcting
details than in making coarse corrections. We tried a lin-
ear sequence τt = (Tmax − t)/Tmax and obtained worse
results. The values of δmin and δmax can be interpreted
as the lowest expected precision and the largest expected
displacements, respectively (in experiments, δmin = 1 and
δmax = 30). For the penalization, we choose a decreasing
sequence (βt)t≥0 of the form βt = 1/(1 − 0.999τt). At
iteration t, the penalized posterior distribution is defined as

pβt
(v|y; f,σ,Σ) ∝ p(y|V = v; f,σ)(π(v;Σ))βt .

Notice that the penalization is expressed on the regulariza-
tion term π(v;Σ) and enforces regularization constraints.
Consequently, during first iterations, candidate displace-
ments which are simulated through large displacements, are
accepted only if they generate significant image difference
corrections (coarse corrections). As iterations increase, the
regularization constraint is relaxed and candidate displace-
ments producing small corrections become more easily ac-
cepted.

5. Results
For an evaluation, we simulated hundred deformations

of the image Lena. For that, we first sampled deformations
from the prior distribution using a Gibbs sampler (values
of Lame constants were λ = 10−6 and µ = 0.005 which
correspond to a Young modulus E = 10−2 and a Poisson
ratio ν = 10−5, finite elements were squares of size 16×16
pixels). We then simulated deformed images by applying
deformations to Lena and adding a centered Gaussian noise
with standard deviation σ = 10. A deformation example is
shown on Figure 1 (b).
We applied simple and penalized Metropolis-Hasting al-

gorithms (respectively MH and PMH) described in Sec-
tion 4.2 to the deformation of the original image Lena onto
each of the simulated images (both algorithms were applied
with T = 400 iterations). This application is illustrated
on Figure 1. After each registration, we computed a mean
displacement error (MDE) by averaging the euclidean dis-
tances between the estimated displacements and the true
displacements at node points. We also computed the stan-
dard deviation of the image differences after registration
(SDD).
In terms of MDE, MH and PMH were not significantly

different. Averaged over all the simulated cases, MDE of
MH was 1.16 ± 2.67 pixels whereas MDE of PMH was
1.06±2.35 pixels. MH produced worse MDE than PMH in
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Figure 1. (a) original source image Lena; (b) simulated target im-
age; (c) deformation of the source image onto the target image
estimated by Penalized Metropolis-Hastings; (d) deformed mesh.

60 percent of the cases. From the SDD viewpoint, MH and
PMH performances were more different. On average, SDD
of MH and PMH were 12.2 and 11, respectively. Moreover,
MH had higher SDD than PMH in 82 percent of the cases.
On Figure 2, we plotted SDD values of PMH vs SDD values
of MH for each of the simulated cases. SDD values of PMH
are mostly concentrated just above the value of the noise
standard deviation (σ = 10) whereas values ofMH are quite
uniformly spread on the interval [10, 14]. There are also
many cases where the performance of MH is low (SDD>
14) whereas performances of PMH is reasonable (SDD<
12). This corresponds to cases where PMH avoids some
local maxima in which MH is stopped.

6. Conclusion

We defined a statistical image registration framework in
which deformation random fields are markovian. In this
framework, we constructed two hybrid Gibbs/Metropolis-
Hasting techniques which take fully advantage of these
markovian properties. The second technique was defined
in a coarse-to-fine way by introducing a penalization on the
sampled posterior distribution. We presented some promis-
ing results suggesting that both techniques can accurately
register images. Experiments also showed that the penal-
ized technique is more robust to local maxima of the pos-
terior distribution than the first technique. This study is
the preliminary step towards the development of estimation
techniques which could be applied to complex image reg-
istration problems. In the future, we will integrate these
techniques in a SAEM parameter estimation method.
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Figure 2. Standard deviation values of the image differences ob-
tained with PMH (ordinate axis) versus values obtained with MH
(abscissa axis) (100 experiments).
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