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Summary: HIV dynamics studies, based on di�erential equations, have signi�cantly improved the

knowledge of HIV infection. While �rst studies use simpli�ed short-term dynamic models, recent

works consider more complex long-term models combined with a global analysis of whole patients

data based on nonlinear mixed models. This approach increases the accuracy of the HIV dynamic

analysis. However statistical issues remain given the complexity of the problem. We propose to use

the SAEM (Stochastic Approximation EM) algorithm, a powerful maximum likelihood estimation

algorithm, to simultaneously analyze the HIV viral load decrease and the CD4 increase in patients

using a long-term HIV dynamic system. We apply the proposed methodology to the prospective

COPHAR2 - ANRS 111 trial. Very satisfactory results are obtained with a model with latent CD4

cells. The 10 parameters, 7 with between patient variability, of this model de�ned with �ve di�erential

equations are well estimated. We show that the e�cacy of nel�navir is reduced compared to indinavir

and lopinavir
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1. Introduction

Understanding variability in response to antiretrovial treament in HIV patients through

modelling is an important challenge. Several HIV dynamic models were proposed to describe

the decrease in viral load and the increase in CD4 cells under treatment and nonlinear mixed

e�ect models (NLMEM) are appropriate to estimate the parameters of these models and

their inter-patient variability. These dynamic HIV systems usually describe the interaction

between several types of CD4 cells and two types of virions (infectious or not). They are

de�ned as nonlinear di�erential systems and have generally no closed-form solutions. As the

available data are the measurements of total number of CD4 (the sum of all the types of

CD4) and the total number of virions (infectious and not infectious), the components of

the di�erential system are partially observed, complicating the estimation of the parameters

characterizing each component.

Several analyses of HIV dynamic models through NLMEM are published (Wu et al., 1998;

Fitzgerald et al., 2002; Putter et al., 2002; Wu and Zhang, 2002; Wu, 2004; Wu et al., 2005;

Huang et al., 2006; Guedj et al., 2007). The �rst analyses of viral load dynamic through

modelling, using standard nonlinear regression or mixed models, considered a short time

period and thus assumed that the concentration of non-infected CD4 cells was constant

(Perelson et al., 1996; Wu et al., 1998; Ding and Wu, 2001). In this case, the di�erential

system becomes linear with an analytical solution. Another simpli�ed approach is to assume

that the initiated therapy inhibits any new infection, which is unrealistic. Under that as-

sumption, the system can be solved explicitly (Wu et al., 1998; Putter et al., 2002). Putter

et al. (2002) proposed the �rst simultaneous estimation of the viral load and CD4 dynamics

based on a di�erential system under this assumption, but had to focus only on the �rst two

weeks of the dynamic after initiation of an anti-retroviral treatment. These two assumptions
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are unsatisfactory when studying long-term response to anti-retroviral treatment for which

the use of complete models expressed through di�erential equations is mandatory.

Maximum likelihood estimation of NLMEM is complex because the likelihood has no

closed form, even for simple models. The �rst published approaches using complex ODE

HIV models and NLMEM adopted a Bayesian statistical point of view. Putter et al. (2002);

Wu et al. (2005); Huang et al. (2006) estimated parameters of ODE system using Markov

Chain Monte Carlo (MCMC) algorithms to give posterior distributions of the parameters,

given informative prior distributions on each ODE parameter. The choice of informative prior

distributions is the main drawback of this approach. Furthermore, Bayesian algorithms can

be very slow to converge, especially in this complex context. Wu et al. (2005) adjusted only

viral load (i.e. the CD4 were not taken into account) with a dynamic system describing the

long-term HIV dynamics and considering drug potency, drug exposure/adherence and drug

resistance during chronic treatment of HIV-1 infected patients. However, the authors used

a simpli�ed model which does not consider separately the compartments of HIV-producing

infected cells and the latent cells and do not decompose the virus compartment into infectious

and non-infectious virions as proposed by Perelson et al. (1996); Perelson and Nelson (1997).

For maximum likelihood estimation in NLMEM, the �rst algorithms were based on ap-

proximations such as linearization (Pinheiro and Bates, 1995) or Laplace approximation

(Wol�nger, 1993). However these algorithms may lead to inconsistent estimates (Ding and

Wu, 2001). More recently algorithms based on Gaussian quadrature have been proposed

(Guedj et al., 2007), however these algorithms are cumbersome and were not applied to

problems with more than three random e�ects. Other new algorithms, more suited to prob-

lems with several random e�ects are stochastic EM algorithms. Among them, the Stochastic

Approximation EM algorithm (SAEM) has convergence results (Delyon et al., 1999; Kuhn

and Lavielle, 2005) also studied for models de�ned by ODE (Donnet and Samson, 2007). It
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is implemented in the MONOLIX software and has been mainly applied for the analysis of

pharmacokinetics models (see Lavielle and Mentré (2007) for example).

Another complexity of the analysis of viral load data is left censoring, as the experimental

devices are not able to measure low level of viral load with su�cient accuracy. When viral

load are below a given limit, namely the limit of quanti�cation (LOQ), the exact value

of the viral load is unknown. The proportion of subjects with viral load below LOQ has

increased with the development of highly active anti-retroviral. Although it is known that

when ignored this censoring may induce biased parameter estimates (Samson et al., 2006;

Thiébaut et al., 2006), several authors did not take into account this problem (Ding and Wu,

2001; Wu et al., 2005). Conversively, Guedj et al. (2007); Hughes (1999); Jacqmin-Gadda

et al. (2000) proposed di�erent approaches to handle accurately the censored viral load

data. Samson et al. (2006) extended the SAEM algorithm to perform adequate maximum

likelihood estimation for left-censored data.

Given the drawbacks of published statistical approaches proposed for the estimation of HIV

dynamic parameters, the �rst objective of this work is to estimate parameter of HIV dynamic

models with the SAEM algorithm. A second objective is to propose and apply statistical

approaches for studying model identi�ability and model selection in this context. We apply

this approach to the data obtained in patients of the clinical trial COPHAR2 - ANRS 111

(Duval et al., 2009) initiating an antiviral therapy with two nucleoside analogs (RTI) and one

protease inhibitor (PI). We analyze simultaneously the HIV viral load decrease and the CD4

increase based on a long-term HIV dynamic system. We consider three biological models and

compare them with respect to their ability to represent HIV-infected patients after initiation

of reverse transcriptase inverse (RTI) and protease inhibitor (PI) drugs therapy. We also

compare the di�erent treatments used in this trial.

This article is organized as follows. Section 2 presents three mathematical models for long-
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term HIV dynamics. In Section 3 we discuss nonlinear mixed e�ects models and estimation

with the SAEM algorithm, model selection, model identi�ability and covariate testing.

We then provide the results obtained in the COPHAR II-ANRS 134 clinical trial using

MONOLIX in Section 4. Section 5 concludes this article with some discussion.

2. Mathematical models for HIV dynamics after treatment initiation

In this section, we present three nonlinear ordinary di�erential systems modeling the inter-

action of HIV virus with the immune system of the human body after initiation of antiviral

treatment containing reverse transcriptase inhibitor (RTI) and protease inhibitor (PI).

The most basic of these models includes four components :noninfected CD4 cells and

infected CD4 cells, infectious viruses and noninfectious viruses (Perelson and Nelson, 1997;

Perelson, 2002). The second model di�erentiates the noninfected CD4 cells into activated

and quiescent noninfected (De Boer and Perelson, 1998; Guedj et al., 2007). The third

model di�erentiates the infected CD4 cells into latently and actively infected cells (Funk

et al., 2001).

2.1 The basic dynamic model

Let TNI , TI and VI denote the concentration of target noninfected CD4 cells, productively

infected CD4 cells and infectious viruses, respectively. Following Perelson et al. (1996), it is

assumed that CD4 cells are generated through the hematopoietic di�erentiation process at a

constant rate λ. The target cells are infected by the virus at a rate γ per susceptible cell and

virion. Noninfected CD4 cells die at a rate µNI whereas infected ones at a rate µI . Infected

CD4 cells produce virus at a rate p per infected cell. The virus are cleared at a rate µV . In

absence of treatment, interactions between CD4 cells and viruses are thus described as:
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dTNI
dt

= λ− γ TNIVI − µNITNI (1)

dTI
dt

= γ TNIVI − µITI
dVI
dt

= p TI − µV VI

Two additional parameters ηRTI and ηPI are introduced to model the e�ect of antiviral

therapy containing RTI and PI. RTI prevents susceptible cells from becoming infected

through inhibition of the transcription of the viral RNA into double-stranded DNA. ηRTI

denotes the proportion of susceptible cells prevented to be infected and is valued between

0 and 1. A value of ηRTI = 1 corresponds to a completely e�ective drug that results in

preventing all new infections of CD4 cells. PI leads to the production of noninfectious viruses

VNI which is modeled trough an additional equation. VNI are produced at a rate ηPIp. ηPI is

a proportion between 0 and 1 and ηPI = 1 corresponds to a completely e�ective drug that

results in preventing all new infection of CD4 cells. It is assumed that infectious and non

infectious viruses die at the same rate µV .

Under combined PI and RTI action, the system (1) becomes:

dTNI
dt

= λ− (1− ηRTI)γ TNIVI − µNITNI (2)

dTI
dt

= (1− ηRTI)γ TNIVI − µITI
dVI
dt

= (1− ηPI)p TI − µV VI
dVNI
dt

= ηPI p TI − µV VNI

It is assumed that before the treatment initiation, the system has reached an equilibrium

state. From (2), the steady state values for uninfected CD4 cells, infected CD4 cells, infectious
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and noninfectious virions are given by:

TNI(0) =
µIµV
p γ

(3)

TI(0) =
µV VI(0)

p

VI(0) =
λ− µNITNI(0)

γ TNI(0)

VNI(0) = 0

The measured viral load is the total viral load V = VI + VNI and the measured CD4 cell

count is the total T = TNI + TI . This basic model is calledMB . Its parameters and their

de�nitions are summarized in Table 1.

2.2 The quiescent dynamic model

Guedj et al. (2007) proposed a more elaborated model which distinguishes quiescent CD4

cells, TQ, target (activated) noninfected cells, TNI , and infected T cells, TI . In this model,

only activated CD4 cells can become infected with HIV, and quiescent cells are assumed to

be resistant to infection. Quiescent CD4 cells TQ are generated through the hematopoietic

di�erentiation process at a constant rate λ. For adults, as the CD4 cell compartment is

largely maintained by self-renewal, the dynamic model allows the quiescent CD4 cells to

become activated at a low constant rate αQ. Quiescent CD4 cells are assumed to die at a

rate µQ, and to appear by the deactivation of activated noninfected CD4 cells at a rate ρ.

Therefore, activated noninfected CD4 cells appear by activation of quiescent cells at rate αQ

and revert to the quiescent stage at rate ρ.

The system of di�erential equations describing this model after initiation of antiviral
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treatment is written as:

dTQ
dt

= λ+ ρ TNI − αQTQ − µQTQ
dTNI
dt

= αQTQ − (1− ηRTI)γ TNIVI − ρTNI − µNITNI
dTI
dt

= (1− ηRTI)γ TNIVI − µITI (4)

dVI
dt

= (1− ηPI)p TI − µV VI
dVNI
dt

= ηPI p TI − µV VNI .

As proposed by Perelson et al. (1996), it is assumed that newly produced viruses are fully

infectious before the introduction of a PI treatment and that before the treatment initiation,

the system has reached an equilibrium state. From (4), the steady state values are given by:

TQ(0) =
λ+ ρ TNI(0)

αQ + µQ
(5)

TNI(0) =
µV µNI
γ p

TI(0) =
µV VI(0)

p

VI(0) =
αQ TQ(0)

γ TNI(0)
− ρ+ µNI

γ

VNI(0) = 0

The measured viral load is the total viral load V = VI + VNI and the measured CD4 cell

count is the total T = TQ + TNI + TI . This quiescent model is calledMQ . Its parameters

and their de�nitions are summarized in Table 1.

2.3 The latent dynamic model

The third model takes into account the fact that not all CD4 cells actively produce virus

upon successful infection (see Funk et al. 2001). This is re�ected by splitting the infected

cell pool into actively and latently infected cells. Uninfected CD4 cells are infected by the

virus, as previously, at a rate (1−ηRTI)γVI . But only a proportion π of this infected cells are

activated CD4 cells, TA, and a proportion (1 − π) are latently infected CD4 cells, TL. The
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latently infected CD4 cells die at a rate µL and become activated at a rate αL. The actively

infected cells TA die at a rate µA and only these cells produce virus particles.

The system of di�erential equations describing this model after initiation of antiviral

treatment is written as:

dTNI
dt

= λ− (1− ηRTI)γ TNIVI − µNITNI (6)

dTL
dt

= (1− π)(1− ηRTI)γ TNIVI − αLTL − µLTL
dTA
dt

= π(1− ηRTI)γ TNIVI + αLTL − µATA
dVI

dt
= (1− ηPI)p TA − µV VI (7)

dVNI

dt
= ηPI p TA − µV VNI .

As previously, it is assumed that before treatment initiation, the system has reached an

equilibrium state. From (6), the steady state values are given by:

TNI(0) =
µAµV (αL + µL)

γp(αL + πµL)
(8)

TA(0) =
µV VI(0)

p

TL(0) =
(1− π)γ TNI(0)VI(0)

αL + µL

VI(0) =
λ− µNITNI(0)

γ TNI(0)

VNI(0) = 0.

The measured viral load is the total viral load V = VI + VNI and the measured CD4 cell

count is the total T = TNI + TL + TA This latent model is calledML . Its parameters and

their de�nitions are summarized in Table 1. .
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3. Statistical Methods

3.1 The nonlinear mixed e�ects model

Let N be the number of patients. For patient i, we measure ni viral loads at times (tij),

j = 1, . . . , ni and mi CD4 cells at times (τij), j = 1, . . . ,mi.

Let us de�ne vi = (vi1, . . . , vi ni) where vij is the observed log10 HIV viral load (cp/mL) for

individual i at time tij, i = 1, . . . , N , j = 1, . . . , ni, and zi = (zi1, . . . , zimi) where zij is the

the CD4 cell count (cells/mm3) for individual i at time τij, i = 1, . . . , N , j = 1, . . . ,mi. The

observed log10 viral load and the CD4 cell count of all patients are analyzed simultaneously

using a nonlinear mixed e�ects model, where V and T are the total number of virus and

CD4 cells:

vij = log10(1000 V (tij;ψi)) + eV,ij (9)

zij = T (τij;ψi) + T (τij;ψi) eT,ij

ψi = h(φi) ; φi ∼ N (µ,Ω)

eV,i ∼ N (0, σ2
V Ini) ; eT,i ∼ N (0, σ2

T Imi)

Here, (eV,ij) and (eT,ij) represent the residual errors. We assume a constant error model for

the log viral load concentration and a proportional error model for the CD4 concentration.

Di�erent parameteric models for V and T were proposed in the previous section. Nonlinear

mixed e�ects models means that these models are functions of a vector of individual param-

eters ψi. This vector ψi is assumed to be some transformation h(φi) of a Gaussian random

vector φi with mean µ (the vector of �xed e�ects) and variance-covariance Ω (the covariance

matrix of the random e�ects). The random individual parameters (ψi) are assumed to be

independent of the residual errors (eV,i, eT,i).

For these models ηRTI and ηPI are inhibition parameters that take their values in [0, 1].

Then, they are de�ned as the logistic transformation of a Gaussian random variable. Similarly
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for modelMQ , π is de�ned as the logistic transformation of a Gaussian random variable. The

others parameters are non-negative parameters. This constraint is satis�ed by assuming a log-

normal distribution, that is by de�ning these parameters as the exponential transformation

of Gaussian random variables.

The observation model is complicated by the detection limit of assays. When some viral

load data vij is below the limit of quanti�cation LOQ, the exact value vij is unknown and the

only available information is that vij 6 LOQ. These data are classically named left-censored

data. Let denote Iobs = {(i, j)|vij > LOQ} and Icens = {(i, j)|vij 6 LOQ} the index sets of

respectively the uncensored and censored observations. Finally, we observe

vobsij =

 vij if (i, j) ∈ Iobs

LOQ if (i, j) ∈ Icens.

3.2 Parameters Estimation

Let θ = (µ,Ω, σ2
T , σ

2
V ) be the set of unknown population parameters. Maximum likelihood

estimation of θ is based on the likelihood function of the observations (vobs, z):

l(vobs, z ; θ) =
N∏
i=1

∫ ∫
p(vobs

i , vcens
i , zi, φi; θ) dφi dv

cens
i (10)

where p(vobsi , vcens
i , zi, φi; θ) is the likelihood of the complete data (vobsi , vcensi , zi, φi) of the i-th

subject. As the random e�ects φi and the censored observations vcens
i are unobservable and

as the regression functions are nonlinear, the foregoing integral has no closed form. Therefore

the maximum likelihood estimate is not available in a closed form.

We propose to use the Stochastic Approximation Estimation Maximisation (SAEM) algo-

rithm, a stochastic version developed by Delyon et al. (1999) of the Expectation-Maximization

algorithm introduced by Dempster et al. (1977). This algorithm computes the E-step of the

EM algorithm through a stochastic approximation scheme. It requires a simulation of one

realization of the non observed data in the posterior distribution at each iteration, avoiding

the computational di�culty of independent samples simulation of the Monte-Carlo EM and
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shortening the time consumption. SAEM algorithm is a true maximum likelihood estimation

method, for which convergence results are proved: pointwise almost sure convergence of

the estimate sequence to a local maximum of the likelihood is proved under conditions

satis�ed by models from the exponential family Delyon et al. (1999). The simulation of

the non observed data in the posterior distribution is not direct for NLMM. Kuhn and

Lavielle (2005) propose to combine the SAEM algorithm with a Markov Chain Monte Carlo

method to realize this simulation step. Donnet and Samson (2007) propose a version of the

SAEM algorithm adapted to mixed models de�ned by di�erential equations. The censoring

of observed response presents an additional challenge in the analysis of NLMM. The SAEM

algorithm also enables to take into account these left-censored viral load data accurately

Samson et al. (2006). The combination of the two extensions of SAEM for di�erential

equations and for left-censored data handling is used in the following analyzes.

3.3 Model selection

The purpose of model selection is to identify a model that best �ts the available data set

with a dimension as small as possible. The two most popular model selection criteria are the

Akaike Information Criterion AIC and the Bayesian Information Criterion BIC. Both AIC

and BIC have some theoretical foundations: Kullback-Leibler distance in information theory

(for AIC), and integrated likelihood in Bayesian theory (for BIC). If the complexity of the

true model does not increase with the size of the data set, BIC is the preferred criterion,

otherwise AIC is preferred (Burnham and Anderson, 1998).

Let PM be the number of parameters in the modelM. In the following, we will denote lM

the likelihood function of the observations (vobs, z) and θ̂M the maximum likelihood estimate

of θ in modelM.

The AIC penalizes the minimized deviance of the model by 2 times the number of free

parameters in the model, includind �xed e�ects and variance components. The BIC, on the



12 Biometrics, 000 0000

other hand, penalizes the minimized deviance by log(N) times the number of free parameters

(we recall that N is the number of individuals).

AIC(M) = −2 log lM(vobs, z; θ̂M) + 2PM,

BIC(M) = −2 log lM(vobs, z; θ̂M) + log(N)PM.

A main di�erence between AIC and BIC is that the penalty term in BIC is much larger

than in AIC. AIC favors a large model while BIC prefers a parsimonious model. Following

the simulation results of Bertrand et al. (2008), the best model is de�ned here as the model

with the lowest BIC. Using any of these two criteria requires to compute the log-likelihood

of modelM.

Following (9), for any model M, the likelihood l of the observations (vobs, z) can be

decomposed as follows (we omit the subscriptM) to simplify the notation).

l(vobs, z; θ) =

∫
p(vobs, z, φ; θ) dφ (11)

=

∫
h(vobs, z|φ; θ)π(φ; θ) dφ (12)

=

∫
h(vobs, z|φ; θ)

π(φ; θ)

π̃(φ; θ)
π̃(φ; θ) dφ (13)

where π is the probability distribution density of φ and π̃ any absolutely continuous distribu-

tion with respect to π. Then, l(vobs, z; θ) can be approximated via an Importance Sampling

integration method:

(1) draw φ(1), φ(2), . . . , φ(K) with the distribution π̃(·; θ),

(2) let

l̂K(vobs, z; θ) =
1

K

K∑
k=1

h(vobs, z|φ(k); θ)
π(φ(k); θ)

π̃(φ(k); θ)
(14)

Obviously, l̂K(vobs, z; θ) is a consistant estimator of the observed likelihood: E(̂lK(vobs, z; θ)) =

l(vobs, z; θ) and Var(̂lK(vobs, z; θ)) = O(K−1).

Furthermore, if π̃ is the conditional distribution p(φ|vobs, z; θ), the variance of the estimator
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is null and l̂K(vobs, z; θ) = l(vobs, z; θ) for any value of K. That means that an accurate

estimation of l(vobs, z; θ) can obtained with a small value of K if the sampling distribution

is close to the conditional distribution p(φ|vobs, z; θ).

We recommend the following procedure: for i = 1, 2, . . . , N , estimates empirically the con-

ditional mean E(φi|vobs
i , zi; θ̂) and the conditional variance-covariance matrix Var(φi|vobs

i , zi; θ̂)

of φi as described above. Then, the φ
(k)
i are drawn with the sampling distribution π̃ as follows:

φ
(k)
i = E(φi|vobs, z; θ̂) + Var

1
2 (φi|vobs, z; θ̂)× T (k)

i

where (T
(k)
i ) is a sequence of i.i.d. random vectors and where the components of T

(k)
i are

independent variables distributed with a t−distribution with ν degrees of freedom.

The numerical results presented here were obtained with ν = 5 d.f.

3.4 Model identi�ability

In order to apply the HIV dynamic model for modeling viral responses and estimating

individual dynamics parameters using viral load data from a clinical study, we need to

resolve an important statistical problem, that is, the identi�ability of model parameters.

Generally, many of the variables in the model may not be measurable and parameters may

not be identi�able. In practice, we will need a trade-o� between the model complexity and the

parameter identi�ability based on the clinical data. If a model has too many components, it

may be di�cult to analyze. If a model is too simple, some important clinical factor cannot be

incorporated, although the viral dynamic parameter can be identi�ed and estimated. Various

works on system identi�cation of these nonlinear HIV models can be found for example in

(Perelson and Nelson, 1997; Xia and Moog, 2003; Je�rey and Xia, 2005; Guedj et al., 2007).

However, it is di�cult to use mathematical tools to study experimental identi�ability

given a model and a dataset. Estimation of over-parameterized model is possible with the

SAEM algorithm. But then a close inspection of the Fisher information matrix and the large

standard errors of �xed e�ect is needed to help to choose which parameters can, indeed,
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be accurately estimated. The identi�ability property can be improved if values of some

parameters are �xed to some known values.

3.5 Covariate testing

Other statistical issues in NLME models are the utilization of covariates to explain part of

inter-individual parameter variability. Comparing models with and without covariates can be

performed through model selection with the BIC criterion. For nested models, the likelihood

ratio test can be applied by computing the log-likelihoods of the di�erent nested models.

Another approach is to use the Wald test from the estimated e�ects of covariates and their

standard errors.

3.6 The MONOLIX software

Monolix is a free software, which implements a wide variety of stochastic algorithms such

as Stochastic Approximation of EM (SAEM), Importance Sampling, MCMC, and Simulated

Annealing, all dedicated to the analysis of nonlinear mixed-e�ects models. The objective

of this new software are: a) parameter estimation by computing the maximum likelihood

estimator of the parameters, without any approximation of the model and standard errors

for the maximum likelihood estimator; b) model selection by comparing several models using

some information criteria (AIC, BIC), testing hypotheses using the Likelihood Ratio Test,

testing parameters using the Wald Test and c) Goodness of �t.

Monolix can be downloaded from the Monolix website (http://software.monolix.org)

and version 2.4 was used in this work. We used the code BiM (release 2.0, April 2005) which

implements a variable stepsize method for sti� initial value problems for ODEs.

4. Application to the COPHAR II - ANRS 134 trial

This methodology is applied to the anaysis of the COPHAR II- ANRS 134 trial an open

prospective non-randomized interventional study.
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4.1 Material and Methods

In the COPHAR II- ANRS 134 trial, 115 HIV-infected patients adults started an antiviral

therapy with at least 2 RTI and one of three di�erent PI. 48 patients were treated with

indinavir (and ritonavir as a booster)(I), 38 with lopinavir (and ritonavir as a booster) (L)

and 35 with nel�navir (N). Patients were followed one year after treatment initiation. Viral

load and CD4 cell count were measured at screening, at inclusion and at weeks 2(or 4), 8,

16, 24, 36 and 48. Plasma HIV-1-RNA were measured by Roche monitored with a limit of

quanti�cation of 50 copies/ml.

Observed viral load and CD4 cell count are displayed in Figure 1 which clearly shows a

large inter-subject variability.

[Figure 1 about here.]

The results of this trial, with further details, are reported in Duval et al. (2009). The

proportion of virological failure was higher in the nel�navir group and similar for indinavir

and lopinavir, although lopinavir is supposed to be a more potent PI now widely used.

We �rst compared the three modelsMB ,MQ andML using the BIC criterion. Then we

studied the identi�ability of the selected model and we tested the e�ect of the PI group by

adding a covariate on ηPI..

The e�ect of the various PI were tested by using the following logit transformation:

logit(ηPI,i) = µ+ βTRTi + bi (15)

where TRTi is the PI administrated to patient i (L, I or N). The reference group is the

lopinavir group (βL = 0). We use the BIC criterion and the Wald test to study the di�erence

in the 3 PI groups: no PI e�ect (LIN), only two groups: L vs. IN (L-IN) or LI vs N (LI-N),

three groups L-I-N.
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4.2 Results

.

[Table 1 about here.]

We �rst compared the three dynamic models. Here, for each model, the complete set of �xed

e�ects summarized in Table 1 are estimated. Furthermore, variability on all the parameters

is assumed without any correlation between the random e�ects. The population parameters

were estimated with the SAEM algorithm and the log-likelihoods were estimated by Monte

Carlo Importance Sampling. The BIC criteria computed for the three models are displayed

in Table 2. According to this criterion, the latent model ML is selected as the best model

among the three candidate models and the second-best model is the quiescent modelMQ .

Furthermore, the best �ts for both the viral load and the CD4 counts are also obtained with

modelML (σV = 0.46 and σT = 0.25).

[Table 2 about here.]

We then studied the identi�ability of theML , and we found that it is not possible, given

the data set, to estimate both µV the rate of death of virions and p their rate of production.

Indeed, when assuming variability on both µV and p the estimated standard errors of both

�xed e�ect are very high and could not be estimated for their inter-patient variabilities

(Table 3).

[Table 3 about here.]

Therefore for the three models, we assumed that µV do not vary across patients and is

�xed to the value 30 /day as in (Ramratnam et al., 1999; Guedj et al., 2007).

Table 4 reports the BIC criterion and the estimated β's for the di�erent merging of

the PI group. The smallest BIC value is for LI-N implying a di�erent e�ect of nel�navir

versus lopinavir and indinavir that are grouped. The estimated parameters of that model
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are reported in Table 5. The e�cacy of PI ηPI is 0.99 for lopinavir-indinavir and 0.75 for

nel�navir, i.e. nel�navir e�cacy for blocking of infectious viruses is 25% less important than

for lopinavir and indinavir, which are boosted PI. The LRT for the nel�navir e�ect is very

signi�cant (p = 10−12 for comparison of models LIN and LI-N), no signi�cant improvement

were found when separating L and I (comparison of models LI-N vs L-I-N: p = 0.32 ). The

Wald tests also agree that only βN is signi�catively di�erent from zero.

[Table 4 about here.]

[Table 5 about here.]

This model indeed provided good �ts of both viral load and CD4 cells as can be seen on the

visual predictive check (Figure 2) and on some individual �ts for patients in each treatment

group (Figure 3).

[Figure 2 about here.]

[Figure 3 about here.]

5. Discussion

This article proposes the SAEM algorithm to estimate parameters of nonlinear mixed model

based on partially observed complex HIV di�erential systems. The estimation of the param-

eters of such a mixed model is a di�cult statistical and computational challenge. The HIV

di�erential systems de�ning these mixed models are non linear, consequently without any

analytical solution.

Furthermore, the ODE system is generally sti�, the classic ODE solver such as Runge-

Kutta being not adapted to solve numerically the system. We use the code BiM (release

2.0, April 2005) which implements a variable order-variable stepsize method for (sti�) initial

value problems for ODEs.

The analysis of such data is also complicated by the left-censoring of the viral load data
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due to the lower limit of detection of experimental devices, and it is well known that omitting

to correctly handle this censored data provides biased estimates of dynamic parameters. The

SAEM algorithm has theoretical convergence properties and is computationally e�cient on

these dynamic models. In this article we applied it to a clinical trial in HIV infection, using

all the data (both viral load and CD4 measurements) obtained during 48 weeks of follow-up

in naive patients starting a treatment while most studies of HIV dynamics model studied

only viral load data during a shorter period (2-6 weeks) after the initiation of anti-retroviral

treatment.

We compared several HIV dynamic models and show that the latent model was the best

one using the BIC criterion. We also study the practical identi�ability of this model from the

standard errors. Using likelihood ratio test to compare the e�cacy of the three studied PI, We

found a sign�cant di�erence in the e�cacy of nel�navir compared to lopinavir or indinavir.

This is in agreement with the results of the trial (Duval et al; 2009) in which virological failure

was found in 33% of patients treated with nel�navir and only in 5% of patients treated by

indinavir or lopinavir. The HIV dynamic model used in this study has some limitations. First,

it does not take into account the fact that HIV undergoes rapid mutation in the presence of

anti-retroviral therapy. Of course, considering such phenomenon in the model may introduce

many more parameters. We attempted to keep the model itself as simple as possible and the

goodness of �t were satisfactory. Second, we consider a constant treatment e�ect, however,

the e�ect of antiviral treatment may change over time, due to pharmacokinetics intra-patient

variability, �uctuating patient adherence, emergence of drug resistance mutations and/or

other factors. Huang et al. (2006) propose viral dynamic models to evaluate antiviral response

as a function of time-varying concentrations of drug in plasma. A more elaborate model

would thus promisingly include this additional extension. Nevertheless, these limitations do

not o�set the major �ndings from our modeling approach, although further improvement may
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be brought. The SAEM algorithm is an useful tool for model development and parameter

estimation in this context of HIV dynamics.
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Figure 1. Observed viral load decrease (left) and CD4 increase (right) after treatment
initiation in the three PI groups: lopinavir (top), indinavir (middle) and nel�navir (bottom)
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Figure 2. Visual predictive checks for the latent model ML . The observed viral loads
and CD4 counts are displayed with dots, the predicted median with a solid line and a 90%
prediction interval with dotted lines.
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Figure 3. Examples of individual �ts obtained with the latent model ML : ID=67
(lopinavir), ID=11 (indinavir) and ID=105 (nel�navir). The + represent the non censored
observations and the ∗ the limit of quanti�cation.
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Table 1

Parameters of each HIV dynamic model (MB : basic model,MQ : quiescent model,ML : latent model

Parameter unit description MB MQ ML

λ cells/mm3/day Rate of production of infected CD4 cells ? ? ?
γ Infection rate of CD4 cell per virion ? ? ?
µNI day−1 Death rate of uninfected CD4 cells ? ? ?
µI day−1 Death rate of infected CD4 cells ? ?
µQ day−1 Death rate of quiescent CD4 cells ?
µL day−1 Death rate for latently infected CD4 cells ?
µA day−1 Death rate for actively infected CD4 cells ?
µV day−1 Death rate of virions ? ? ?
p Number of virions production by CD4 cell ? ? ?
ρ day−1 Rate of reversion to the quiescent state ?
αQ Activation rate of quiescent CDA cells ?
αL Activation rate of latently infected CD4 cells ?
π Proportion of infected CD4 cells that become activated ?
ηRTI E�cacy of NRTI ? ? ?
ηPI E�cacy of PI ? ? ?

Number of parameters 8 11 11
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Table 2

Comparison of the three dynamic models. The estimated standard errors are in parenthesis.

Model −2× log Likelihood BIC σV σT

Basic model (MB ) 9048(4) 9134(4) 0.67(0.03) 0.27(0.01)
Quiescent model (MQ ) 8963(7) 9077(7) 0.62(0.03) 0.27(0.01)
Latently model (ML ) 8644(6) 8758(6) 0.46(0.02) 0.25(0.01)
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Table 3

Simultaneous estimation of µV and p in modelML , assuming variability on µV and p

θ θ̂ SE (%)

p0 650 240
µV 30.8 236
ωp0 0.665 NaN
ωµV 0.621 NaN



HIV dynamics model estimation 29

Table 4

Comparison of di�erent covariate models for PI group. The estimated standard errors are in parenthesis. Here, pβN

(resp. pβI ) is the p-value of the Wald test used for testing βN = 0 (resp. βI = 0).

Model −2× log-likelihood BIC βN pβN βI pβI

LIN 8646 (6) 8741 (6)
LI-N 8635 (6) 8734 (6) -5.6 (2.6) 0.045
L-I-N 8631 (6) 8735 (6) -4.9 (2.3) 0.036 -1.1 (4.0) 0.790
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Table 5

Estimated �xed e�ects and standard deviations of the random e�ects for the latent modelML . The estimated
standard errors are in parenthesis. See eq. (9) for the de�nition of the �xed and random e�ects.

Parameter (S.E.) ; Inter-patient variability (S.E.)

λ (cells/mm3/day) 2.61 (0.25) 0.55 (0.044)
γ 0.0021 (0.0009) 0 (�xed)

µNI (day−1) 0.0085 (0.0010) 0.44 (0.073)
µL (day−1) 0.0092 (0.0009) 0 (�xed)
µA (day−1) 0.289 (0.016) 0.399 (0.047)
µV (day−1) 30 (�xed) 0 (�xed)

p 641 (110) 0.9 (0.13)
αL 1.6e-5 (1.7e-6) 0.678 (0.33)
π 0.443 (0.038) 0.45 (0.047)
ηRTI 0.90 (0.17) 2.93 (1.8)
ηPI 0.99 (0.003) 3.19 (2)
βN -5.6 (2.6)
σV 0.464 (0.024)
σT 0.254 (0.009)


