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Abstract

This article focuses on parameter estimation of multi-levels nonlinear mixed effects mod-

els (MNLMEMs). These models are used to analyze data presenting multiple hierarchical

levels of grouping (cluster data, clinical trials with several observation periods,...). The

variability of the individual parameters of the regression function is thus decomposed as

a between-subject variability and higher levels of variability (for example within-subject

variability). We propose maximum likelihood estimates of parameters of those MNLMEMs

with two levels of random effects, using an extension of the SAEM-MCMC algorithm. The

extended SAEM algorithm is split into an explicit direct EM algorithm and a stochastic

EM part. Compared to the original algorithm, additional sufficient statistics have to be

approximated by relying on the conditional distribution of the second level of random ef-

fects. This estimation method is evaluated on pharmacokinetic cross-over simulated trials,

mimicking theophyllin concentration data. Results obtained on those datasets with either

the SAEM algorithm or the FOCE algorithm (implemented in the nlme function of R soft-

ware) are compared: biases and RMSEs of almost all the SAEM estimates are smaller than

the FOCE ones. Finally, we apply the extended SAEM algorithm to analyze the pharma-

cokinetic interaction of tenofovir on atazanavir, a novel protease inhibitor, from the ANRS

107-Puzzle 2 study. A significant decrease of the area under the curve of atazanavir is found

in patients receiving both treatments.
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1 Introduction

The use of non-linear mixed effects models (NLMEMs) increases in several fields such as agron-

omy, forestry, clinical trials, population pharmacokinetics (PK) and pharmacodynamics or viral

dynamics to model longitudinal data. In some settings, data can present multiple hierarchical

levels of grouping, leading to multiple nested levels of variability. For instance, we may study

patients that are grouped in medical services that are themselves grouped into hospitals. In this

article, we call multilevel non-linear mixed effects models (MNLMEMs) the models that describe

such data. MNLMEMs represent a natural extension of models with single variability level, and

they have recently been subject to a great deal of attention in statistical literature. In the field

of forestry, Hall and Clutter (1) analyze longitudinal measures of yield and growth that are mea-

sured on each tree within a plot. In the field of agronomy, Rekaya et al. (2) consider milk yield

data where each cow is observed longitudinally during its first three lactations. Jaffrézic et al.

(3) perform genetic analyses of growth measurements in beef cattle acknowledging the fact that

several cows come from the same sire. Another example is population PK, where concentration

measurements may be taken with several patients over several distinct time intervals, that are

often named periods or occasions. That grouping pattern is used for instance in PK cross-over

trials.

In NLMEMs with only one level of variability, often corresponding to between-subject vari-

ability, the analysis results in the estimation of the fixed effects parameters and of the between-

subject variability of the parameters, also called inter-subject variability. When there is more

than one level of grouping, the higher levels of variability can be estimated. In the specific case

where the second level of grouping corresponds to multiple periods of measurement, this variabil-

ity is called within-subject variability (or intra-subject variability, or inter-occasion variability),

and corresponds to the variation of the individual parameters across the different study periods

or units. In the context of pharmacokinetics, Karlsson et al. (4) demonstrate the importance

of modeling this second level of variability in two-levels NLMEMs. They show that neglecting

it resulted in biased estimates for the fixed effects.
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The parameter estimation of NLMEMs is not trivial because the likelihood of NLMEMs

cannot be expressed in a closed form due to the non-linearity of the regression function in the

random effects. Therefore, several estimation methods have been proposed. The First Order

Conditional Estimates (FOCE) algorithm performs a first order linearization of the regression

function with respect to the random effects (5; 6). The implementation of the FOCE algorithm

in the NONMEM software and in the nlme function of Splus and R enables the estimation of both

between- and within-subject variabilities. From our practice, the main drawback of this method

is however that it does not always converge when one estimates simultaneously the between-

and the within-subject variabilities on several parameters. Furthermore, this linearization-based

method cannot be considered as fully established in theory. For instance, Vonesh (7) and Ge

et al. (8) give examples of specific designs resulting in inconsistent estimates, such as when the

number of observations per subject does not increase faster than the number of subjects or when

the variability of random effects is too large.

Several estimation methods have been proposed as alternatives to linearization algorithms.

A common method to handle numerical integration is the adaptative Gaussian quadrature

(AGQ) method. An estimation algorithm of NLMEM parameters based on this classical AGQ

method has been proposed by Pinheiro and Bates (9) and is implemented in the SAS procedure

NLMIXED (10). However, the AGQ method requires a sufficiently large number of quadrature

points implying an often slow convergence with very high computational time. Furthermore,

two-levels NLMEM can be implemented in the NLMIXED procedure, but to our knowledge,

the convergence is difficult to obtain in practice (3). Improvements upon this method are thus

needed. The second alternative to linearization is the use of the Expectation-Maximization (EM)

algorithm (11) in order to estimate models with missing or non-observed data such as random

effects. Because of the nonlinearity of the model, stochastic versions of the EM algorithm have

been proposed. Wei et al. (12); Walker (13) and Wu (14) propose MCEM algorithms, with a

Monte-Carlo approximation of the E-step. However the MCEM algorithm may have computa-

tional problems (i.e slow or even non convergence). As an alternative to address computational

problems, a stochastic approximation version of EM (SAEM) has been proposed in (15; 16),

which requires the simulation of only one realization of the missing data for each iteration, sub-

stantially reducing the computation time. Kuhn and Lavielle (16) propose to combine the SAEM

algorithm with a Monte-Carlo Markov Chain (MCMC) procedure adapted to the NLMEMs, and
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prove that the resulting estimates are convergent and consistent.

To date, none of the EM-based algorithms are directly applicable to the case of multilevel

NLMEMs and have to be adapted. The objective of this paper is to extend the SAEM algo-

rithm to MNLMEMs with two levels of variability: both E and M steps need to be adapted

to integrate higher levels of random effects. We also propose estimates of the likelihood and of

the Fisher information matrix. We evaluate this algorithm on a PK example, more precisely a

two-periods one-sequence cross-over trials simulated mimicking theophyllin concentration data

(9). We also apply the SAEM algorithm to the PK interaction of two HIV molecules (tenofovir

and atazanavir) from a PK substudy of the ANRS 107-Puzzle 2 trial.

After describing the model and notations (section 2), section 3 describes the SAEM algo-

rithm. Section 4 reports the simulation study and its results. In Section 5, we study the PK

interaction of tenofovir on atazanavir in HIV patients. Section 6 concludes the article with some

discussion.

2 Models

Let us denote yijk the observation in unit k (k = 1, . . . ,K) for subject i (i = 1, · · · , n) and at

time tijk (j = 1, · · · , nik). For instance, the different units can be the different periods in the

case of PK trials, or the different parents in the case of genetic analyses. We assume, as a known

fact, two nonlinear functions f and g such that the two-levels non-linear mixed effects model

linking observations to sampling times can be written as:

yijk = f(tijk,φik) + g(tijk,φik)εijk,

εijk ∼ N (0,σ2),

where φik is the p-vector of the parameters of subject i for unit k and εijk is the measurement

error. We hypothesize that the errors εijk given φik are mutually independent. We assume that

the individual parameters φik are random vectors and that for each unit k, φik can be broken
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into:

φik = µ + βk + bi + cik, (1)

bi ∼ N (0, Ω),

cik ∼ N (0, Ψ),

where µ + βk is the mean value for unit k, bi is the random effect of size p of subject i, and

cik is the random effect of size p of subject i and unit k. To ensure the identifiability of the

parameters, we assume that β1 = 0, ie µ is the mean of the first unit and βk represents the

difference (or effect) of the kth unit in comparison to this first unit. The random effects (bi)

and (cik) are assumed to be mutually independent. The total variance of the parameters is

thus broken into a between-subject variance Ω and a within-subject variance Ψ. Finally, the

individual parameters pK-vector φi = (φi1, . . . ,φiK) of subject i is distributed with a Gaussian

distribution with mean vector (µ, µ+β2, . . . , µ+βK) and a pK × pK covariance matrix Γ equal

to

Γ =





Ω + Ψ Ω . . . Ω

Ω Ω + Ψ
. . .

...
...

. . . . . . Ω

Ω . . . Ω Ω + Ψ





.

Let θ = (µ,β, Ω, Ψ,σ2), the vector of all the parameters of the model where β denotes the

vector of unit effect β = (β1, . . . ,βK). The aim of this paper is to propose an estimation of θ

by maximizing the likelihood of the observations y = (yijk)ijk.

Let us denote b̃i := µ + bi. The likelihood of y can be written as:

p(y; θ) =
∫

p(y,φ, b̃; θ)d(φ, b̃)

where p(y,φ, b̃; θ) is the likelihood of the complete data (y,φ, b̃), with φ = (φik)i=1,...,n,k=1,...,K

and b̃ = (b̃1, . . . , b̃n). Because of the nonlinearity of the regression function f with respect to

the random effects φik, the likelihood has no closed form. Therefore, the maximization of the

likelihood in θ, θ ∈ Θ, is a complex problem. We propose to use a stochastic version of the EM

algorithm, which is presented in detail in the next section.

5



3 Estimation algorithm

3.1 The SAEM algorithm

The EM algorithm introduced by Dempster et al. (11) is a classical approach to estimate param-

eters of models with non-observed or incomplete data. In two-levels NLMEMs, the non-observed

data are the individual parameters (φ, b̃) and the complete data of the model is (y,φ, b̃). Let us

denote Lc(y,φ, b̃; θ) = log p(y,φ, b̃; θ) the log-likelihood of the complete data. The principle of

the iterative EM algorithm is to maximize the function Q(θ|θ′) = E(Lc(y,φ, b̃; θ)|y; θ′) where

the expectation is the conditional expectation under the posterior distribution p(φ, b̃|y; θ′), the

maximization of Q being often easier than the direct maximization of the observed data log-

likelihood. Each iteration of the EM algorithm is computed through two steps: the Expectation

step (E-step) and the Maximization step (M-step). At the &th iteration of the algorithm, the E

step is the evaluation of Q(θ | θ̂!), while the M step updates θ̂! by maximizing Q(θ | θ̂!).

Let us show that the function Q can be reduced in the case of a MNLMEM. First, let us

note that as p(b̃|y,φ; θ) = p(b̃|φ; θ), by application of the Bayes theorem we have:

p(φ, b̃|y; θ) = p(b̃|φ; θ)p(φ|y; θ) =
n∏

i=1

p(b̃i|φi; θ)p(φi|yi; θ). (2)

Second, through the linearity of the individual parameters model in equation (1), the poste-

rior distribution p(b̃i|φi; θ) of the ith subject is explicit: p(b̃i|φi; θ) is a Gaussian distribution

N (m(φi, θ), V (θ)) of mean and variance equal to:

m(φi, θ) = V (θ)

(
Ψ−1

K∑

k=1

(φik − βk) + Ω−1µ

)
, (3)

V (θ) = (Ω−1 + KΨ−1)−1.

Due to the factorization given in equation (2), function Q can be rewritten as:

Q(θ|θ′) =
∫ (∫

Lc(y,φ, b̃; θ)p(b̃|φ; θ′)db̃

)
p(φ|y; θ′)dφ.

Because of the explicit posterior distribution of random effects b̃ given in equation (3), the

computation of this conditional expectation can be split into two parts : the computation of
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the integral with respect to the posterior distribution of b̃ which has an analytical form, and

the computation of the integral with respect to the posterior distribution of φ which has no

analytical form. Therefore the EM algorithm is split into an explicit direct EM algorithm for

the computation of the first integral and the use of a stochastic version of the EM algorithm for

the computation of the second integral.

Let us detail the explicit computation of the first integral, denoted by R(y,φ, θ, θ′)

R(y,φ, θ, θ′) =
∫

Lc(y,φ, b̃; θ)p(b̃|φ; θ′)db̃.

This integral has an analytical form. Indeed, the complete log likelihood Lc(y,φ, b̃; θ) is equal

to

Lc(y,φ, b̃; θ) = −1
2

K∑

k=1

n∑

i=1

nik∑

j=1

log(2πσ2g2(tijk,φik)) − 1
2

K∑

k=1

n∑

i=1

nik∑

j=1

(yijk − f(tijk,φik))2

σ2g2(tijk,φik)

−nK

2
log(2π det Ψ) − 1

2

K∑

k=1

n∑

i=1

(φik − b̃i − βk)tΨ−1(φik − b̃i − βk)

−n

2
log(2π det Ω) − 1

2

n∑

i=1

(b̃i − µ)tΩ−1(b̃i − µ).

As the posterior distribution p(b̃|φ; θ) is known (equation 3), R(y,φ, θ, θ′) is equal to

R(y,φ, θ, θ′) = −1
2

∑

i,j,k

log(2πσ2g2(tijk,φik))
1
2

∑

i,j,k

(yijk − f(tijk,φik))2

σ2g2(tijk,φik)
(4)

−nK

2
log(2π det Ψ) − nK

2
Ψ−1/2V (θ′)Ψ−1/2 − 1

2

∑

i,k

(φik − m(φi, θ
′) − βk)tΨ−1(φik − m(φi, θ

′) − βk)

−n

2
log(2π det Ω) − n

2
Ω−1/2V (θ′)Ω−1/2 − 1

2

n∑

i=1

(m(φi, θ
′) − µ)tΩ−1(m(φi, θ

′) − µ).

Therefore Q is reduced to the computation of the second integral under the posterior distri-

bution p(φ|y; θ) as follows:

Q(θ|θ′) =
∫

R(y,φ, θ, θ′)p(φ|y; θ′)dφ. (5)

Given the non-linearity of function f with respect to φ, the posterior distribution p(φ|y; θ′) has

no closed form and the function Q defined by (5) is intractable. Thus we propose to use the
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stochastic version SAEM of the EM algorithm proposed by Delyon et al. (15) which evaluates

the integral Q by a stochastic approximation procedure.

Let us detail this SAEM algorithm in the case of two-levels NLMEMs. Let us note that the

quantity R(y,φ, θ, θ′) belongs to the regular curved exponential family, i.e, it can be written as

R(y,φ, θ, θ′) = −Λ(θ) + 〈S(y,φ, θ′), Φ(θ)〉, (6)

where 〈., .〉 is the scalar product, Λ and Φ are two functions twice continuously differentiable

on Θ and S(y,φ, θ′) is known as the minimal sufficient statistics of the complete model. Those

statistics are detailed later. In this case, the Q function is reduced to

Q(θ|θ′) = −Λ(θ) + 〈
(∫

S(y,φ, θ′)p(φ|y; θ′)dφ
)

, Φ(θ) 〉,

In this case, at the &th iteration, the SAEM algorithm proceeds as follows:

• Simulation step: simulation of the missing data (φ(!)
i )i under the conditional distribution

p(φ|y; θ̂!)

• Stochastic approximation step: computation of a stochastic approximation s!+1 of E
[
S(y,φ, θ̂!)|y; θ̂!

]
=

∫
S(y,φ, θ̂!)p(φ|y; θ̂!)dφ, using (γ!)!≥0, a sequence of positive numbers decreasing to 0:

s!+1 = s! + γ!(S(y,φ(!), θ̂!) − s!).

• Maximization step: update of the estimate θ̂!+1:

θ̂!+1 = arg max
θ∈Θ

(−Λ(θ)) + 〈s!+1, Φ(θ))〉) .

The sufficient statistics of the complete model (4) evaluated during the SA step of the SAEM
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algorithm are as follows:

s1,i,!+1 = s1,i,! + γ!

(
K∑

k=1

φ(!)
ik − s1,i,!

)
, i = 1, . . . , N,

s2,k,!+1 = s2,k,! + γ!

(
n∑

i=1

φ(!)
ik − s2,k,!

)
, k = 1, . . . ,K,

s3,!+1 = s3,! + γ!

(
n∑

i=1

m(φ(!)
i , θ̂!)tm(φ(!)

i , θ̂!) − s3,!

)
,

s4,!+1 = s4,! + γ!

(
K∑

k=1

n∑

i=1

(
φ(!)

ik − m(φ(!)
i , θ̂!)

)t (
φ(!)

ik − m(φ(!)
i , θ̂!)

)
− s4,!

)
,

s5,!+1 = s5,! + γ!




∑

i,j,k

(
yijk − f(tijk,φ(!)

ik )

g(tijk,φ(!)
ik )

)2

− s5,!



 ,

The expression of the M step is obtained by derivation of equation (4). The parameter estimates

are as follows:

µ̂!+1 = V (θ̂!)Ψ̂−1
!

(
1
n

n∑

i=1

s1,i,!+1 −
K∑

k=1

β̂k,!

)
+ V (θ̂!)Ω̂−1

! µ̂!,

β̂k,!+1 =
s2,k,!+1

n
− µ̂!+1, for k = 2, . . . ,K,

Ω̂!+1 = V (θ̂!) +
s3,!+1

n
− (µ̂!+1)tµ̂!+1,

Ψ̂!+1 = V (θ̂!) +
s4,!+1

nK
− 1

K

K∑

k=1

(β̂k,!+1)tβ̂k,!+1,

σ̂2
!+1 =

s5,!+1∑n
i=1

∑K
k=1 nik

.

Comparing with the classic SAEM algorithm for single-level NLMEMs, the extension of

SAEM to the two-levels NLMEMs is finally split into an explicit EM algorithm and a stochastic

EM part. Furthermore, it requires the computation of two intermediate quantities (the condi-

tional expectations m(φi, θ) and variance V (θ) of the between-subject random effects parameters

bi) as well as two additional sufficient statistics (S3 and S4), functions of m(φi, θ). The M-step

differs from the one of the classic SAEM for single-level NLMEMs, especially for the estimation

of the variance matrix Ω and Ψ which uses the additional quantity V (θ).

As proved by (15; 17), the convergence of the SAEM algorithm is ensured under the following

assumption:
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Assumption (A1):

1. Functions Λ and Φ are twice continuously differentiable on Θ.

2. The log-likelihood log p(y; θ) is d times differentiable on Θ, where d is the dimension of

S(y,φ, θ′).

3. Function s̄ defined as

s̄(θ, θ′) =
∫

S(y,φ, θ′)p(φ|y; θ)dφ

is continuously differentiable on Θ with respect to its first variable.

4. For all & in N, γ! ∈ [0, 1],
∑∞

!=1 γ! = ∞ and
∑∞

!=1 γ
2
! < ∞.

For a convenient step sizes sequence γ!, the assumption (A1) is trivially checked in our model.

A choice of step sizes sequence γ! is presented in Section 4.

However, the simulation step of the SAEM algorithm, which performs the simulation of the

non-observed vector φ under the posterior distribution p(φ|y; θ) cannot be directly performed

because the posterior distribution is only known up to a constant. In this case, Kuhn and Lavielle

(16) propose to combine the SAEM algorithm with a Markov Chain Monte Carlo (MCMC)

procedure for the simulation step. This version of the SAEM-MCMC algorithm can be used for

the estimation of MNLMEMs. The MCMC procedure used in this case is detailed in section 3.2.

As proved by (17), the convergence of the SAEM-MCMC algorithm is ensured under assumption

(A1) and the following additional assumption:

Assumption (A2):

For any θ in Θ, we assume that the conditional distribution p(.|y; θ) is the unique limiting

distribution of a transistion probability Πθ, that has the following properties:

1. For any compact subset V of Θ, there exists a real constant L such that for any (θ, θ′) in

V 2

sup
{φ,φ′}∈E

|Πθ (φ′|φ) − Πθ′ (φ′|φ)| ≤ L‖θ − θ′‖.

2. The transition probability Πθ supplies an uniformly ergodic chain whose invariant proba-

bility is the conditional distribution p(φ|y; θ), i.e.

∃Kθ ∈ R+, ∃ρθ ∈]0, 1[ | ∀& ∈ N ‖Π!
θ(·|φ) − p(·, ·|y; θ)‖TV ≤ Cθρ

!
θ,
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where ‖ ·‖ TV is the total variation norm. Furthermore,

C = sup
θ∈Θ

Cθ < ∞ and ρ = sup
θ∈Θ

ρθ < 1.

3. Function S is bound on E .

At iteration &, the S-step of the SAEM-MCMC algorithm consists thus in simulating φ(!) with

the transistion probability Πθ̂!

(
φ(!−1)|dφ(!)

)
.

The assumption (A2.2) is the most delicate to check, and it depends on the choice of the

MCMC algorithm. This is detailed in the next subsection after presenting the MCMC procedure.

In practice, the SAEM algorithm being a stochastic algorithm, there exists no deterministic

convergence criterion which could be used to stop the iterations of the algorithm as soon as the

convergence is reached. Therefore, we recommend to implement the SAEM algorithm with a

sufficiently large number of iterations and to graphically check the convergence by plotting the

values of the SAEM estimates obtained along iterations versus the iterations. Such a figure is

described in Section 4.

3.2 MCMC algorithm for the simulation step

Let us detail the simulation step of the SAEM-MCMC algorithm, which performs the simula-

tion of the missing data φ through a Markov chain which has p(φ|y; θ) as unique stationary

distribution. For subject i, by Bayes formula, this conditional distribution is proportional to

p(φi|yi; θ) ∝
K∏

k=1

p(yik|φik; θ)p(φi; θ).

We propose to use a Metropolis-Hastings (M-H) algorithm to simulate this Markov chain.

Let us recall the principle of this algorithm. At iteration r of the M-H algorithm, given the

current value φ(r)
i of the Markov Chain, the M-H algorithm proceeds as follows:

1. Simulate φc
i with a proposal distribution q(·,φ(r)

i )

2. Compute the acceptance probability

α(φc
i ,φ

(r)
i ) =

∏K
k=1 p(yik|φc

ik; θ)p(φc
i ; θ)∏K

k=1 p(yik|φ(r)
ik ; θ)p(φ(r)

i ; θ)

q(φc
i ,φ

(r)
i )

q(φ(r)
i ,φc

i )
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3. Simulate u with a uniform distribution U [0, 1]

4. Update the Markov chain with

φ(r+1)
i =






φc
i if u ≤ α(φc

i ,φ
(r)
i )

φ(r)
i else

The convergence of the M-H algorithm strongly depends on the choice of the proposal distribu-

tion q. The convergence is ensured for some proposal distributions such as independent (q(·,φ(r)
i )

independent of φ(r)
i ) or symmetrical (q(·,φ(r)

i ) = q(φ(r)
i , ·)) proposals (18). These proposals are

detailed below. Given the dimension of φ, we also consider a Metropolis-Hastings-Within-Gibbs

algorithm, combining both Gibbs algorithm and M-H procedure. The advantage of the Gibbs

algorithm is to reduce the multi-dimensional simulation problem to the successive simulations of

one-dimension vectors. Finally, at iteration & of the SAEM algorithm, given the current estimate

θ̂!, we combine the three following proposal transitions:

1. the prior distribution of φi, that is the Gaussian distribution N (µ̂!+ β̂!, Γ̂!), corresponding

to an independent M-H algorithm,

2. the multidimensional random walks N (φ(!−1)
i , ρΓ̂!) (symmetric proposal), where ρ is a

scaling value chosen to ensure a satisfactory acceptation rate, namely around 30% as

proposed in (19),

3. a succession of Kp unidimensional Gaussian random walks (symmetric proposal), i.e each

component of φi is successively updated, leading to a Metropolis-Hastings-Within-Gibbs

algorithm,

where Γ̂! is equal to

Γ̂! =





Ω̂! + Ψ̂! Ω̂! . . . Ω̂!

Ω̂! Ω̂! + Ψ̂!
. . .

...
...

. . . . . . Ω̂!

Ω̂! . . . Ω̂! Ω̂! + Ψ̂!





.

Given the proposal distributions, as previously detailed, and using the theoretical convergence

results proposed in (18), this hybrid Gibbs algorithm converges and generates an uniformly
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ergodic chain with p(φ|y; θ) as the stationary distribution. Consequently, by applying the con-

vergence theorem of Kuhn and Lavielle (16) and under assumptions (A1) and (A2), we prove that

the estimate sequence (θ̂!)!≥0 produced by the extended SAEM algorithm converges towards a

(local) maximum of the likelihood p(y; θ).

In practice, the convergence of the MCMC algorithm is difficult to verify. As in Bayesian

inference, the only convergence criteria existing for MCMC procedure are graphical criteria. We

have to check if the estimate sequence explores a sufficiency large domain of the Markov chain.

A convergence figure is presented and commented in section 4.

3.3 Estimation of the Fisher information matrix and the likelihood

To perform statistical tests such as Wald test or likelihood ratio test, we propose estimators of the

Fisher information matrix and the likelihood, respectively. As the Fisher information matrix has

no closed form in MNLMEMs, we propose to approximate it by the Fisher information matrix

of the multi-level linear mixed model deduced from the MNLMEM after linearization of the

function f around the conditional expectation of the individual parameters (E(φi|y; θ̂), 1 ≤ i ≤

n). The computation of this linearized Fisher information matrix is direct and does not need

any approximation.

The estimation of the likelihood of the MNLEM is based on an Importance Sampling pro-

cedure, as proposed by Samson et al. (20) for NLMEMs. The Importance Sampling procedure

has been introduced to approximate the integral of the likelihood with a smaller variance than

with other Monte Carlo methods. In this case, an estimate of the contribution p(yi; θ) of the

individual i to the likelihood is

p̂(yi; θ) =
1
T

T∑

t=1

p(yi,φ
(t)
i ; θ)

qi(φ
(t)
i )

where (φ(t)
i )t=1,...,T are simulated using the individual instrumental distribution qi. As an in-

dividual instrumental distribution qi, we propose a Gaussian approximation of the individual

conditional posterior distribution p(φi|yi; θ).
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4 Simulation study: a PK example

4.1 Simulation settings

The objective of this simulation study is to illustrate the main statistical properties of the

extended SAEM algorithm (bias, root mean square errors, group comparison tests) and to

compare them to the FOCE algorithm. We do not use the AGQ algorithm, since procedure

NLMIXED does not succeed, in practice, in estimating such complex variance models.

We use the PK data of orally administered theophyllin to define the population model for the

simulation study. These data are classical ones in population pharmacokinetics, often used for

software evaluation (21). We assume that concentrations can be described by a one-compartment

model with first order absorption and first order elimination:

f(t,φ) =
DKa

V Ka − Cl

(
e−

Cl
V t − e−Kat

)

where D is the dose, V is the volume of distribution, Ka is the absorption rate constant and Cl is

the clearance of the drug elimination. These parameters are positive and distributed according to

a log-normal distribution. Thus, φ has the following components: φ = (log V, log Ka, log AUC),

with AUC = D/Cl. We assume identical sampling times for all subjects: for all i in 1, . . . , n,

k = 1, 2, tijk = tj for j = 1, . . . , J . Additive Gaussian random effects are assumed for each

parameter with a diagonal covariance matrix Ω and a a diagonal covariance matrix Ψ. Let

ω2 = (ω2
V ,ω2

Ka
,ω2

AUC) and ψ2 = (ψ2
V ,ψ2

Ka
,ψ2

AUC) denote the vector of the variances of the

random effects. A combined error model is assumed by setting g(t,φ) = 1 + f(t,φ).

We set the dose for all subjects to the value of 4 mg. For all the parameters, the values are

those proposed by Panhard and Mentré (22): log V = −0.73, log Ka = 0.39 and log AUC = 4.61,

ω2
V = 0.01, ω2

Ka
= 0.04, ω2

AUC = 0.04, ψ2
V = 0.0025, ψ2

Ka
= 0.01, ψ2

AUC = 0.01 and σ2 = 0.01.

We generate n = 24 and n = 40 total numbers of subjects with J = 10 blood samples per

subject, taken at 15 minutes, 30 minutes, 1, 2, 3.5, 5, 7, 9, 12 and 24 hours after dosing. The

individual data of one simulated trial are displayed in Figure 1.

[Figure 1 about here.]
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4.2 Evaluation of estimates

Our aim is to evaluate and compare the estimates produced by the extended SAEM algorithm

with those produced by the nlme function of the R software. We fit the simulation model and

compute the relative bias and relative root mean square error (RMSEs) for each component of

θ from 1000 replications of the two trials described below (n = 24 and n = 40 total number of

subjects).

The simulation model includes a treatment effect on all components of θ. We test the null

hypothesis {βlog AUC = 0} using the Wald test. We also fit the model where the treatment effect

on log AUC is not estimated, and test the same null hypothesis using the Likelihood Ratio Test

(LRT).

The SAEM algorithm is implemented with 500 iterations. During the first 200 iterations, a

constant step size γ! = 1 is chosen, in order to let the Markov chain explore the parameters do-

main. Then during the last 300 iterations, the stochastic approximation scheme is implemented

with a step size equal to γ! = 1
!−200 at iteration &. This choice of step size sequence verifies

convergence assumption (A1.1). The evolution of each SAEM parameter estimates is plotted

against iterations (logarithmic scale) on Figure 2. During the first iterations of the SAEM

algorithm, the estimate sequences explore randomly some neighborhoods of the initial values,

through the Markov chain simulation. In particular, these behaviors are clearly visible for the

fixed effect parameters (µ and β). After 200 iterations, the estimates converge then rapidly to a

neighborhood of the maximum likelihood, due to the stochastic approximation scheme. In this

example, the iteration number has been chosen such that the convergence is clearly attained

before the last iteration.

[Figure 2 about here.]

The relative bias and RMSEs obtained on the 1000 datasets with n = 24 and n = 40 subjects

are presented in Table 1.

[Table 1 about here.]

The bias and the RMSEs of the fixed effects (µ) are small with the SAEM algorithm and are

almost half of those obtained with nlme (especially the RMSEs). The bias and RMSEs of the

unit effect (β) are small and on the same order with both methods. For the between-subject
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variability parameters (Ω), the bias are reduced with SAEM, while the RMSEs are of the same

order with both methods. For the within-subject variability parameters (Ψ), the bias and the

RMSEs are satisfactory, and on the same order with both methods. The bias and RMSE for σ2

are small and satisfactory for both methods.

The type I error of the Wald test and of the LRT are evaluated on the same 1000 datasets.

For n = 24, the type I errors are 6.0% and 6.5% for SAEM and nlme, respectively, for the Wald

test, and 4.6% and 5.6% for SAEM and nlme, respectively, for the LRT. For n = 40, the type

I error are 5.6% and 5.4% for SAEM and nlme, respectively, for the Wald test, and 5.8% and

5.2% for SAEM and nlme, respectively, for the LRT.

5 Application to the population pharmacokinetics of atazanavir

with tenofovir

5.1 Study population: ANRS 107 - Puzzle 2 study

The Puzzle 2 - ANRS 107 trial was a randomized open-label, multiple-dose study supported

by the French Agence Nationale de Recherche sur le Sida (ANRS) with HIV-infected patients

in treatment failure with their antiretroviral therapy. Patients were randomized to receive for

the first two weeks either their unchanged treatment with PIs and nucleoside reverse transcrip-

tase inhibitors (NRTIs) (group 1) or unchanged treatment with NRTIs in combination with

atazanavir (300 mg QD) plus ritonavir (100 mg QD) as a substitute for the failing PI therapy

(group 2). From week 3 (day 15) to week 26, patients from either group switched to atazanavir

(300 mg QD) plus ritonavir (100 mg QD) plus tenofovir DF at 300 mg QD and NRTIs selected

according to the baseline reverse transcriptase genotype of the HIV isolated in each patient.

In this paper, we analyze concentration data obtained from 10 patients from group 2 who

were included and measured at 1, 2, 3, 5, 8, and 24 h after administering drug during each

treatment period. Those exact dosing intervals were recorded. The objective of the substudy

was to measure the pharmacokinetic parameters of atazanavir (administered with ritonavir)

either before (day 14 [week 2]) or after (day 42 [week 6]) initiation of tenofovir DF in HIV-

infected patients in order to detect pharmacokinetic interactions of tenofovir on atazanavir.

Data of this substudy were analyzed using a nonlinear mixed effect model by Panhard et al (23)
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and a significant effect of the co-administration of tenofovir on the pharmacokinetic parameters

of atazanavir was found using the nlme function of the Splus software.

The aim of the present analysis is to evaluate the effect of tenofovir on the PK parameters

of atazanavir using the SAEM algorithm and the Wald test described in section 4.

We use the one-compartment model with zero-order absorption proposed by Panhard et al.

(23) to describe atazanavir concentrations:

f(t,φ) =
FD

TaCl

(
(1 − e−

Cl
V t) t<Ta +

e−
Cl
V τ t<Ta (1 − e−

Cl
V Ta)e−Cl

V (t−Ta)

(1 − e−
Cl
V τ )

)

with F the bioavailability, V the volume of distribution of atazanavir, (Ta) the absorption

duration, Cl the elimination clearance and τ the dosing interval (24 hours until the PK visit).

The vector of the logarithm of the identifiable parameters is φ = (log(V/F ), log(Ta), log(AUC)).

Data of both treatment periods are simultaneously analyzed using a NLMEM with two levels

of variability (the between-patient and within-patient variabilities) on each PK parameter. A

treatment effect is also estimated for each PK parameter, and a homoscedastic error model is

used.

5.2 Results

Concentrations versus time are displayed in Figure 3. The SAEM algorithm succeeds in the

estimation of all the parameters. The resulting parameters estimates are displayed in table

2. The SAEM algorithm estimates the AUC between-patient variability and the V/F and Ta

within-patient variabilities to 0.48, 0.69 and 0.19, respectively. The three other variances are

estimated to 0.

[Table 2 about here.]

A significant effect of co-medication with tenofovir is found on log(AUC) (p=0.00015) with the

Wald test based on the SAEM algorithm.

The individual prediction curves for the two periods are overlaid on the concentration data on

Figure 3 for 10 patients. The goodness-of-fit plots (population and individual predicted concen-

trations versus observed concentrations; standardized residuals versus predicted concentrations

and versus time) are judged satisfactory, and are displayed in Figure 4.
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[Figure 3 about here.]

[Figure 4 about here.]

6 Discussion

The main original element of this study is the development of the SAEM algorithm for two-

levels non-linear mixed effects models. We extend the SAEM algorithm developed by Kuhn and

Lavielle (16), which was not yet adapted to the case of MNLMEMs with two levels of random

effects. This algorithm will be implemented in the 3.1 version of the monolix software, freely

available on the following website: http://monolix.org. The two levels of random effects are the

between-subject variance and the within-subject (or between-unit) variance, with N subjects

and K units, with no restriction on N or K. We show that the SAEM algorithm is split into two

parts: an explicit EM algorithm and a stochastic EM part. The integration of the term p(b|φ; θ)

in the likelihood results in the derivation of two additional sufficient statistics compared to the

original algorithm. Furthermore it uses two intermediate quantities, the conditional expectations

and variance of the between-subject random effects parameters b. The addition of higher levels

of variability would therefore require other extensions of the algorithm.

The convergence of the algorithm is monitored from a graphical criterion, as shown in Fig1.

An automatic implementation of that stopping criterion to optimize both the number of itera-

tions and the stochastic approximation step should be considered in future work and extension

of the Monolix software.

The simulation study illustrates the accuracy of our approach. We show that the bias and

RMSEs obtained by the extended SAEM algorithm are satisfactory for all parameters. The

bias are reduced compared to those obtained with the FOCE algorithm implemented in the

nlme function of the R software. The bias are especially divided by two for the fixed effects

parameters with SAEM. Furthermore, whereas the nlme implementation of the FOCE algorithm

does not always converge with both between- and within-patient variability on all parameters,

the extended SAEM algorithm does. We develop the tests for a difference between the units,

and we obtain type I errors close to the expected 5% for the Wald test and the LRT.

The analysis of the pharmacokinetics of atazanavir with tenofovir in the Puzzle 2 - ANRS

107 trial also demonstrates the ability of the extended SAEM algorithm to detect treatment
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interaction on a real data set. When testing for an interaction of tenofovir on the PK of

atazanavir, the impact of tenofovir on the absorption of atazanavir is confirmed; more precisely,

a decrease of the AUC of atazanavir as shown by Panhard et al. (23) is found.

We compare the extension of SAEM to the FOCE algorithm, that is the most popular method

in population pharmacokinetics, which is one of the largest application fields of NLMEM. We try

to use the NLMIXED procedure of SAS implementing Gaussian quadrature. However, procedure

NLMIXED does not succeed, in practice, in estimating such complex variance models, on our

simulated data, neither on the atazanavir dataset. The next step is a comparison with a Bayesian

estimation of the parameters using Winbugs, which is beyond the scope of this paper.

The next ambitious development would be an extension of the algorithm to the case of

MNLMEMs with more than two levels of random effects, in order to analyze, for instance,

genetic data where more than one generation of parents are taken into account. However, it

would be difficult to develop a general estimation method since it strongly depends on the

relation (linear or not) of the different levels of random effects.

To conclude, the extended SAEM algorithm combines the statistical properties of an exact

method together with a high computational efficiency. We thus recommend the use of this

method in MNLMEMs.
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A Index of notations

Model notations

i (i = 1, · · · , n): index of subject

j (j = 1, · · · , nik): index of measurement of subject i for unit k

k (k = 1, . . . , K): index of unit

tijk: measurement time in unit k for subject i and measurement j

yijk: observation in unit k for subject i at timetijk

y = (yijk)ijk: vector of the observations in the K units for all the n subject

f and g: non-linear functions linking observations to sampling times

φik: p-vector of the parameters of subject i for unit k

φi = (φi1, . . . ,φiK): pK-vector of individual parameter of subject i

φ = (φik)i=1,...,n,k=1,...,K

µ: p-vector of the mean of the individual parameters for k = 1

βk: effect of the kth unit in comparison to this first unit

β = (β1, . . . ,βK): vector of the unit effects

bi: random effect of size p of subject i

b̃i := µ + bi b̃ = (b̃1, . . . , b̃n) cik: random effect of size p of subject i and unit k

εijk: measurement error

Ω: p × p between-subject covariance matrix

Ψ: p × p within-subject covariance matrix

Γ: pK × pK covariance matrix of the individual parameters φi (i = 1, · · · , n)

σ2: variance of the measurement error

θ = (µ,β, Ω, Ψ,σ2): vector of all the parameters

Algorithm notations

p(y,φ, b̃; θ): likelihood of the complete data

Lc(y,φ, b̃; θ): log-likelihood of the complete data

p(φ, b̃|y; θ′): posterior distribution of (φ, b̃) given (y; θ′)

p(φ|y; θ′): posterior distribution of φ given (y; θ′)

p(b̃|φ; θ): posterior distribution of b̃ given (φ; θ)
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m(φ, θ): mean of p(b̃|φ; θ)

V (θ): variance of p(b̃|φ; θ)

Q(θ|θ′) := E(Lc(y,φ, b̃; θ)|y; θ′))

R(y,φ, θ, θ′) :=
∫

Lc(y,φ, b̃; θ)p(b̃|φ; θ′)db̃

Λ(θ, θ′) and Φ(θ, θ′): functions of Θ × Θ

&: iteration number of the SAEM algorithm

φ(!)
i : missing data simulated at iteration &

S(y,φ): minimal sufficient statistics of the complete model of dimension d

s!+1: stochastic approximation of E
[
S(y,φ)|θ̂!

]

(γ!)!≥0: step sizes sequence

Πθ: transition probability

q(φc
i ,φ

(!)
i ): proposal distribution of the Metropolis-Hastings (M-H) algorithm

φc
i : candidate simulated using q(φc

i ,φ
(!)
i )

α(φc
i ,φ

(!)
i ): acceptance probability of the M-H algorithm

u: scalar sample generated with a uniform distribution U [0, 1]

Cθ and ρθ: constants involved in the proof of uniform ergodicity of the Markov Chain

qi: instrumental distribution used for the estimation of p(yi; θ) by Importance Sampling

T : number of simulated set of parameters in Importance Sampling

PK example notations

D: drug dose

V : volume of distribution of the drug (in liters)

Ka: absorption rate constant (in hours−1)

Ta: absorption duration (in hours)

Cl: clearance of elimination (in liters.hours−1)
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Figure 1: Simulated theophyllin concentration data for 24 subjects during the first period (plain
line) and during the second period (dotted line)
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Figure 2: Evolution of the estimates, function of the iteration of SAEM algorithm (with a
logarithm scale for the abscis axis).
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Figure 3: Individual concentrations and individual predicted curves for the pharmacokinetics of
atazanavir in 10 subjects: x and ∗, observations with and without tenofovir, respectively; dotted
and plain line, individual predictions of the atazanavir pharmacokinetics with and without
tenofovir, respectively.
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Figure 4: Goodness-of-fit plots for atazanavir final population PK model: population (a) and
individual (b) predicted concentrations (in ng/mL) versus observed concentrations (in ng/mL),
standardized residuals versus predicted concentrations (in ng/mL) (c) and versus time (in hours)
(d).
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Table 1: Relative biases (%) and relative root mean square errors (RMSE) (%) of the esti-
mated parameters evaluated by the extended SAEM algorithm and the FOCE algorithm (nlme
function) from 1000 simulated trials.

n=24 subjects n=40 subjects
Bias RMSE Bias RMSE

SAEM nlme SAEM nlme SAEM nlme SAEM nlme
V 0.01 0.53 3.9 6.4 -0.06 0.54 2.91 5.00
ka 0.48 -1.48 14.4 24.4 0.02 -3.07 10.79 18.4
AUC -0.08 -0.20 1.0 1.5 -0.11 -0.24 0.79 1.13
βV -0.00 -0.01 3.6 3.6 -0.05 -0.06 2.83 2.80
βka -0.73 -0.76 14.2 18.8 0.24 0.27 10.73 10.60
βAUC 0.02 -0.02 0.7 1.1 0.00 1.14 0.57 1.14
ω2

V -5.13 -5.92 38.7 38.4 -3.45 -4.28 30.30 30.37
ω2

ka
-3.99 -7.07 42.4 41.5 -3.23 -4.63 33.49 33.32

ω2
AUC -4.88 -7.29 34.5 34.2 -1.51 -3.80 27.41 27.02

ψ2
V -8.67 -7.29 69.4 68.5 -5.93 -4.91 58.78 57.81

ψ2
ka

-10.94 -9.09 73.5 72.0 -7.06 -5.17 62.00 60.60
ψ2

AUC -5.37 -5.37 43.6 42.6 -4.92 -5.79 33.31 32.47
σ2 -0.33 -0.10 7.7 7.7 0.28 0.67 6.03 6.09
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Table 2: Pharmacokinetic parameters of atazanavir (estimate and SE (%)) estimated with the
SAEM

Parameters Estimate SE (%)
log(V/F ) (L) 4.01 5.79
log(Ta) (h) 1.36 6.72
log(AUC) (ng.mL−1.h) 10.67 1.61
βV/F 0.12 267.43
βTa 0.33 45.03
βAUC -0.38 25.31
ωV/F 0 -
ωTa 0 -
ωAUC 0.48 25.48
ψV/F 0.55 28.30
ψTa 0.16 35.76
ψAUC 0 -
σ (ng.mL−1) 732.29 8.40
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