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SUMMARY

Non-linear mixed-effects models (NLMEMs) are used to improve information gathering from longitudinal

studies and applied to treatment evaluation in disease evolution studies, such as HIV infection. The

estimation of parameters and the statistical tests are critical issues in NLMEMs since the likelihood and

the Fisher information matrix have no closed form. An alternative method to numerical integrations, in

which convergence is slow, and to methods based on linearisation, in which asymptotic convergence has

not been proved, is the Stochastic Approximation Expectation-Maximization (SAEM) algorithm. For the

Wald test and the likelihood ratio test, we propose estimating the Fisher information matrix by stochastic

approximation and the likelihood by importance sampling. We evaluate these SAEM-based tests in a

simulation study in the context of HIV viral load decrease after initiation of an antiretroviral treatment.

The results from this simulation illustrate the theoretical convergence properties of SAEM. We also propose

a method based on the SAEM algorithm to compute the minimum sample size required to perform a Wald

test of a given power for a covariate effect in NLMEMs. Lastly we illustrate these tests on the evaluation of

the effect of ritonavir on the indinavir pharmacokinetics in HIV patients and compare the results with those

obtained using the adaptative Gaussian quadrature method implemented in the SAS procedure NLMIXED.
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2 A. SAMSON ET AL.

1. Introduction

Most clinical trials aim at comparing the efficacy of two different treatments or studying the

effect of co-medication or physiological covariates. To assess whether the effect of such covariates

implies a better reduction of the disease than without the covariates, several biological endpoints

are repeatedly measured along the trial extent. The statistical approaches commonly used to

study the influence of the covariate are classically based on the final measurements of this

longitudinal data. Alternative methods to improve information extraction from longitudinal studies

are analyses based on linear or non-linear mixed-effects models (NLMEMs). Such models have been

developed for disease evolution studies, to determine the efficacy of anti-viral treatments in human

immunodeficiency virus (HIV) [1, 2, 3, 4] or hepatitis B virus [5] infections evaluated through

measures of viral load evolution, or prostate cancer treatment assessed by prostate-specific antigen

dosage [6]. NLMEMs are also used to model the evolution of functional markers, for instance,

for the decay of functional capacity in patients with rheumatoid arthritis [7], or the evolution of

the ventilation function in patients with asthma [8]. NLMEMs are also powerful tools to analyze

the pharmacokinetic properties of a drug. They allow for decreasing the number of samples per

subject, which is an important advantage for interaction studies of protease inhibitors in HIV

infected patients, for example [9].

Analysis of the covariate effect based on longitudinal data is thus essential. The properties of

the statistical tests used to perform this analysis are based on the maximum likelihood (ML)

theory. However, because of the non-linearity of the regression function in the random effects, the

likelihood of NLMEMs cannot be expressed in a closed form and the estimation of parameters

by ML theory is complex. This situation leads to the development of widely used estimation

methods based on likelihood linearization. These algorithms realize a first-order linearization of

the regression function, as in the First Order and First Order Conditional Estimate (FOCE)

algorithms [10, 11] implemented in the NONMEM software and in the nlme function of Splus

and R software [12]. However these approximate methods cannot be considered as fully established

theoretically. Furthermore, Vonesh gives an example of a specific design resulting in inconsistent

estimates obtained with linearization methods, such as when the number of observations per subject

does not increase faster than the number of subjects [13]. Particularly, convergence assumptions, on

which the statistical tests are based, are not fulfilled. For instance, several authors show an inflation

of the type I error by simulation of the most widely used group comparison tests, the Wald test
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GROUP COMPARISON TESTS IN NLMEM 3

and the Likelihood Ratio Test (LRT) [14, 15, 16, 17]. Thus, methods with proven convergence and

consistency for finding the maximum likelihood estimate in NLMEMs are required.

Several estimation methods of conventional ML theory have been proposed as alternatives to

linearization algorithms. A common method to handle numerical integrations is the adaptative

Gaussian quadrature (AGQ) method. Estimation algorithms of parameters in a generalized mixed

model and in a NLMEM based on this classical AGQ method have been proposed by Pinheiro and

Bates [18] and are implemented in the SAS procedures GLIMMIX and NLMIXED, respectively [19].

However, the AGQ method requires a sufficiently large number of quadrature points implying an

often slow convergence, which is not very stable. Improvement upon this method is thus needed.

A second common method to handle numerical integrations is importance sampling, which is a

stochastic integration method. However, as emphasized by Ge el al. [20], to achieve satisfactory

numerical stability, this method can be computationally intensive, and hence numerically less

efficient than many other parametric methods. The tool most commonly used to estimate models

with missing or non-observed data such as random effects is the Expectation-Maximization (EM)

algorithm [21]. The widespread popularity of the EM is largely due to its monotonicity: the

likelihood increases at every step. Furthermore, the convergence of the EM algorithm has been

widely studied [21]. Because of the non-linearity of the model, stochastic versions of the EM

algorithm are proposed. Wei et al. [22]; Walker [23] and Wu [24, 25] propose MCEM algorithms,

with a Monte-Carlo approximation of the expectation of the sufficient statistics in the E-step. This

Monte-Carlo implementation is based on independently distributed samples with the posterior

density of the parameters conditional on the observations. However the MCEM algorithm may have

computational problems, such as slow or even no convergence and the large sample simulations

realised by Monte Carlo Markov Chain (MCMC) procedure at each iteration are time consuming.

Furthermore, the replication choice of the Monte Carlo sample is a central issue to guarantee

convergence, and this problem remains unsolved. As an alternative to address both the pointwise

convergence and the computational problem, we propose stochastic approximation versions of EM

(SAEM) [26, 27]. This algorithm requires the simulation of only one realization of the missing data

at each iteration, which substantially reduces computation time. In addition, pointwise almost sure

convergence of the estimate sequence to a local maximum of the likelihood has been proved under

general conditions [26]. Kuhn and Lavielle [28] propose to combine the SAEM algorithm with a

MCMC procedure adapted to NLMEMs.
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4 A. SAMSON ET AL.

The first objective of this paper is to propose ML statistical tests for NLMEMs based on this

SAEM algorithm. The Wald test statistic requires the computation of the standard errors (SEs) of

the estimated parameters. The inverse of the Fisher information matrix provides an upper bound

of the estimated variance matrix but has no closed form because of the incomplete data structure.

Therefore, we propose an estimate of this Fisher information matrix on the basis of Louis’ principle

[29] and the stochastic approximation procedure implemented in SAEM. To estimate the likelihood

required for the LRT, we propose to use an importance sampling procedure. We then implement

these methods and evaluate them in a simulation study of HIV infection dynamics. We simulate

datasets from the bi-exponential model for HIV dynamics proposed by Ding and Wu [14], and

evaluate the statistical properties of the SAEM parameter estimates, the standard error and the

likelihood estimates. We also evaluate the type I error and the power of the tests for a comparison

of a treatment effect on one parameter. Methods for minimum required sample size determination

are needed for group comparison tests based on NLMEMs. Kang et al. [30] propose a method to

compute sample sizes given a test hypothesis, based on a first-order linearization of the NLMEM.

The second objective of this paper is to propose an alternative to this linearization-based approach,

by using a SAEM-based approach. The sample size computation method is illustrated on the same

HIV dynamics example.

After describing the model and notations (section 2), section 3 describes the SAEM algorithm

and the statistical tests. Section 4 reports the simulation study and its results. Section 5 illustrates

these tests on the evaluation of the effect of ritonavir on the indinavir pharmacokinetics, in patients

with HIV infection. We compare the results with those obtained using the adaptative Gaussian

quadrature method implemented in the SAS procedure NLMIXED. Section 6 concludes the article

with some discussion.

2. Models and notations

Let us define yi = (yi1, . . . , yini
) where yij is the response value for individual i at time tij ,

i = 1, . . . , N , j = 1, . . . , ni, and let us define y = (y1, . . . , yN ). We define an NLMEM as follows:

yij = f(φi, tij) + g(φi, tij) εij ,

εi ∼ N (0, σ2Ini
), (1)

φi = Xiµ + bi,with bi ∼ N (0,Ω),
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GROUP COMPARISON TESTS IN NLMEM 5

where f(·) and/or g(·) are non-linear functions of φ, εi = (εi1, . . . , εini
) represents the residual

error, φi is a p-vector of individual regression parameters, µ is the k × p-matrix of fixed effects,

Xi is the k-vector of known covariates, bi is a p-vector of random effects independent of εi, σ2 is

the residual variance, Ini
the identity matrix of size ni and Ω quantifies the variance matrix of

the random effects. The maximum likelihood estimation in NLMEM is based on the log-likelihood

function L(y ; θ) of the response y, with θ = (µ,Ω, σ2) ∈ Θ the vector of all the parameters of the

model. This function is equal to:

L(y ; θ) =
N∑

i=1

L(yi ; θ) =
N∑

i=1

log

(∫
p(yi, φi; θ) dφi

)
, (2)

where p(yi, φi; θ ) is the likelihood of the complete data (yi, φi) of the i-th subject and is equal to

p(yi, φi; θ) =
∏ni

j=1 p(yij |φi; θ)p(φi; θ). As the random effects φi are unobservable and the regression

functions are non-linear, the integral (2) has no closed form.

3. Estimation algorithm and group comparison tests

3.1. The SAEM algorithm

The EM algorithm is a classical approach to estimate parameters of models with non-observed

or incomplete data [21]. For NLMEMs, the non-observed vector is the individual parameter

vector φ = (φ1, . . . , φN ) and the complete data of the model is (y, φ). Let us define the function

Q(θ|θ′) = E(Lc(y, φ; θ)|y; θ′), where Lc(y, φ; θ) is the log-likelihood of the complete data. At the

m-th iteration of the EM algorithm, the E step is the evaluation of Qm(θ) = Q(θ | θ̂m), whereas

the M step updates θ̂m by maximizing Qm(θ). For cases in which the E step has no analytic form,

Delyon et al. [26] introduce a stochastic version of the EM algorithm that evaluates the integral

Qm(θ) by a stochastic approximation procedure. The authors prove the convergence of this SAEM

algorithm under general conditions if Lc(y, φ; θ) belongs to a regular curved exponential family:

Lc(y, φ; θ) = −Λ(θ) + 〈S(y, φ),Φ(θ)〉,

where 〈., .〉 is the scalar product and S(y, φ) is the minimal sufficient statistic of the model.

The E step is then divided into a simulation step (S step) of the non-observed data φ(m)

under the conditional distribution p(φ|y; θ̂m) and a stochastic approximation step (SA step) of
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6 A. SAMSON ET AL.

E
(
S(y, φ)|θ̂m

)
:

sm+1 = sm + γm(S(y, φ(m)) − sm), (3)

using (γm)m≥0 a sequence of positive numbers decreasing to 0. The M step is thus the update of

the estimate θ̂m:

θ̂m+1 = arg max
θ∈Θ

(−Λ(θ) + 〈sm+1,Φ(θ)〉) .

For NLMEMs, the SA step reduces to:

s1,i,m+1 = s1,i,m + γm

(
φ

(m)
i − s1,i,m

)
, i = 1, . . . , N,

s2,m+1 = s2,m + γm

(
N∑

i=1

φ
(m)t
i φ

(m)
i − s2,m

)
,

s3,m+1 = s3,m + γm




∑

i,j

(
yij − f(φ

(m)
i , tij)

g(φ
(m)
i , tij)

)2

− s3,m



 ,

and θ̂m+1 is obtained in the maximization step as follows:

µ̂m+1 =

(
N∑

i=1

Xt
i Xi

)−1
N∑

i=1

Xt
i s1,i,m+1,

Ω̂m+1 =
1

N

(
s2,m+1 −

N∑

i=1

(Xiµ̂m+1)s
t
1,i,m+1 −

N∑

i=1

s1,i,m+1(Xiµ̂m+1)
t +

N∑

i=1

(Xiµ̂m+1)(Xiµ̂m+1)
t

)
,

σ̂2
m+1 =

s3,m+1∑N

i=1 ni

.

However, the simulation step can be complex when the posterior distribution p(φ|y; θ) has no

analytical form, such as for NLMEMs. Therefore an MCMC procedure such as the Metropolis-

Hastings algorithm can be used to simulate φ(m). At the m-th iteration of the SAEM algorithm, the

S step is thus the simulation of φ(m) with use of a Metropolis-Hastings algorithm which constructs

a Markov Chain, with p(φ|y; θ̂m) as the unique stationary distribution (see [27] for more details).

Kuhn and Lavielle [27] present the details of the SAEM implementation and prove that under

general hypotheses, the sequence (θ̂m)m≥0 obtained by this algorithm converges almost surely

towards a (local) maximum of the likelihood L(y; ·).

3.2. Estimation of the Fisher Information matrix with stochastic approximation

The computation of the standard errors (SEs) of the estimated parameters is needed to perform

the Wald test and to compute the required minimum sample size. These SEs can be evaluated as
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GROUP COMPARISON TESTS IN NLMEM 7

the diagonal elements of the inverse of the Fisher information matrix estimate, of which evaluation

is complex because it has no analytic form. We adapt the estimation of the Fisher information

matrix, proposed by Delyon et al. [26] and based on the Louis’ missing information principle [29].

The Hessian of L(y; θ) can then be expressed as:

∂2
θL(y; θ) = E

[
(∂2

θLc(y, φ; θ)
)

+ Var (∂θLc(y, φ; θ)) .

The Jacobian of L(y; θ) is the conditional expectation of the complete data likelihood:

∂θL(y; θ) = E (∂θLc(y, φ; θ)|y, θ) .

For NLMEMs, the derivatives ∂θLc(y, φ; θ) and ∂2
θLc(y, φ; θ) have analytical forms. Therefore we

implement their estimation using the stochastic approximation procedure of the SAEM algorithm.

At the m-th iteration of the algorithm, we evaluate the 3 following quantities:

∆m+1 = ∆m + γm

(
∂θLc(y, φ(m+1); θ̂m+1) − ∆m

)
,

Gm+1 = Gm + γm

(
∂2

θLc(y, φ(m+1); θ̂m+1) + ∂θLc(y, φ(m+1); θ̂m+1)∂θLc(y, φ(m+1); θ̂m+1)
t − Gm

)
,

Hm+1 = Gm+1 − ∆m+1∆
t
m+1.

As the sequence (θ̂m)m≥0 converges to the maximum of the likelihood, the sequence (Hm)m≥0

converges to the Fisher information matrix.

3.3. Estimation of the likelihood with importance sampling

The computation of the likelihood is needed to perform the LRT. The likelihood can be computed

by adaptative Gaussian quadrature (AGQ) method. However, the convergence of the AGQ method

can be slow and not very stable, especially when the number p of random effects is large. Alternative

methods are stochastic integrations, such as Monte Carlo or importance sampling methods. Kuhn

and Lavielle [27] propose a simple Monte-Carlo procedure to estimate L(y; θ), the estimate of the

log likelihood of the i-th subject is as follows:

L(yi; θ ) = log

(
1

T

T∑

t=1

p(yi|φ
(t)
i ; θ)

)
,

with φ
(t)
i ∼iid N (µ,Ω), for t = 1, . . . , T . By the strong law of large numbers, this estimate L(y; θ)

converges almost surely towards E[L(y; θ)]. However, this Monte-Carlo estimate is susceptible
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8 A. SAMSON ET AL.

to numerical instabilities and to computational precision issues [31]. To avoid these numerical

problems, we propose to estimate the likelihood using an importance sampling procedure. The

importance sampling estimates of the log likelihood of the i-th subject is as follows:

L(yi; θ ) = log

(
1

T

T∑

t=1

p(yi|φ
(t)
i ; θ)p(φ

(t)
i ; θ)

hi(φ
(t)
i ; θ)

)

with hi(.; θ) any instrumental distribution and φ
(t)
i ∼iid hi(.; θ), for t = 1, . . . , T . This estimate

converges for the same reason as the regular Monte-Carlo estimate, whatever the choice of the

distribution hi. However, some choices of hi are obviously better than others, especially to reduce

the variance of the estimate. Among the distributions hi, it is possible to exhibit the optimal

distribution that minimizes the variance of the estimate [32]. For NLMEMs, this distribution is

the individual posterior distribution p(φ|yi; θ). However, because this distribution has no closed

form in NLMEMs, we propose for hi a Gaussian approximation of the i-th individual posterior

distribution (i.e. φ
(t)
i ∼ N (µpost

i ,Ωpost
i )). For each i, the posterior individual mean µpost

i and the

posterior individual variance Ωpost
i are estimated by the empirical mean and empirical variance of

the φ
(m)
i simulated by the MCMC procedure.

3.4. Statistical tests

Let us assume that a scalar covariate effect β is tested on the k-th fixed effect. Let us denote by Gi

the value of the covariate for subject i. The vector Xi is Xi = (1, Gi) and the fixed effect matrix

is:

µ =




µ1 . . . µk−1 µk µk+1 . . . µp

0 . . . 0 β 0 . . . 0




The null hypothesis to test is H0: {β = β0}, with the alternative hypothesis H1: {β 6= β0}. Both

the Wald test and the LRT can be performed to assess the covariate effect. For the Wald test, the

parameter β̂ and its variance V (β) = SE2(β) are estimated with the SAEM algorithm under H1.

The statistic SW = (β̂ − β0)
2/V (β) follows a 1 degree of freedom χ2

1 distribution under H0. The

rejection region of the Wald test for a nominal level α is therefore {SW > χ2
1;1−α}, where χ2

1;1−α is

the critical value of the centered χ2
1 distribution. For the LRT, the maximum likelihood estimates θ̂1

and θ̂0 of the models with and without the covariate effect respectively are computed with SAEM.

The log-likelihoods L1 = L(y; θ̂1) and L0 = L(y; θ̂0) of the model with and without covariate effect

respectively are estimated by importance sampling. The statistic SLRT = 2(L1 −L0) is computed.
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GROUP COMPARISON TESTS IN NLMEM 9

Under H0, SLRT follows a χ2
1 distribution. The rejection region of the LRT test for a nominal level

α is therefore {SLRT > χ2
1;1−α}. These 2 tests can easily be extended to a vector β of covariate

effects, the degrees of freedom for the χ2 distribution being then the number of components of β.

3.5. Sample size computation

We propose a method to compute the power of a Wald test of a covariate effect based on NLMEMs.

This computation requires proceeding through the following steps: specify the regression function

and the NLMEM to be used; identify values for the parameter θ; specify an experimental design

(tij)1≤i≤N,1≤j≤ni
; identify the covariate effect to test, (i.e. the alternative hypothesis H1); evaluate

the standard errors SEN , and finally, compute the power of the test. The minimum sample size

required for a given power is then deduced from these last 2 steps, which are detailed below.

Let the tested parameter β be a scalar covariate effect on one fixed effect. For a clinical trial

aiming at detecting a covariate effect of at least (β1 − β0) on this fixed effect, the alternative

hypothesis of the test is H1: {β ≥ β1}. Under H1, the statistic SW is asymptotically distributed

with a non-centered χ2
1 distribution with a non-centrality parameter (β − β0)

2/V (β). Therefore,

the power of the Wald test is equal to:

p(β) =

∫ ∞

χ2
1;1−α

π(x; 1, (β − β0)
2/V (β))dx (4)

where π(x; 1, c) is the probability density function of the non-centered χ2
1 distribution, with a non-

centrality parameter c. To compute the expected variance or standard error of β in an NLMEM, we

propose to use the estimate of the Fisher information matrix provided by the SAEM algorithm and

detailed in section 3.2. When all patients have the same sampling design, a dataset with a covariate

effect β = β1 is generated with this sampling design and with a number Nsim of subjects large

enough to ensure a fine approximation of the expected SE by the observed SE. The estimation of

the Fisher information matrix is performed on this simulated dataset using the SAEM algorithm.

Because the Fisher information matrix of the complete dataset is the sum of the individual Fisher

information matrices, given the hypothesis of an identical sampling design for each subject, the

SE for a dataset of N subjects, SEN (β), can be evaluated from the SE of the simulated dataset

SENsim
(β) using SEN (β) = SENsim

(β) ·
√

Nsim/N . Therefore, for a given design and a given

number of subjects N , the power of the Wald test can be evaluated from the equation (4). Finally,

for a given power, the minimum sample size required is deduced from this power evaluation.
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10 A. SAMSON ET AL.

4. Simulation study

4.1. Simulation settings

The objective of this simulation study is to illustrate some statistical properties of the SAEM

algorithm in the context of HIV viral dynamics. We evaluated the accuracy of the parameter

estimates, the SE and the likelihood estimates. We performed the Wald test and the LRT in the

context of group comparison tests, and lastly, we computed the power of the Wald test.

The bi-exponential model for initial HIV dynamics proposed by Ding and Wu [14] was used to

simulate the datasets:

f(φi, tij) = log10(P1ie
−λ1itij + P2ie

−λ2itij ).

This function has p=4 individual parameters: P1i, P2i are the baseline values and λ1i, λ2i 2-

phase viral decay rates. These parameters are positive and distributed according to a log-normal

distribution. Thus, φi and µ take the following values: φi = (ln P1i, ln P2i, ln λ1i, ln λ2i) and

µ = (lnP1, ln P2, ln λ1, ln λ2). Identical sampling times are assumed for all subjects. Additive

Gaussian random effects are assumed for each parameter with a diagonal covariance matrix Ω.

Let ω2 = (ω2
1 , ω2

2 , ω2
3 , ω2

4) denote the vector of the variances of the random effects. Additive

Gaussian error is assumed with a constant variance σ2 (i.e. g(φi, tj) = 1 for all i, j). For the

fixed effects, the values are those proposed by Ding and Wu [14]: lnP1 = 12, lnP2 = 8,

lnλ1 = ln(0.5), lnλ2 = ln(0.05). The inter-subject variability is identical for the 4 parameters:

ω2
1 = ω2

2 = ω2
3 = ω2

4 = 0.3 corresponding to a variation coefficient of 55%. The residual standard

deviation is σ = 0.065, which corresponds to a variation coefficient of 15% for the viral load. With

the Matlab software, we generated N = 40 or N = 200 total number of subjects with n=6 blood

samples per patient, taken on days 1, 3, 7, 14, 28 and 56. A simulated dataset with N = 40 subjects

is represented on Figure 1.

4.2. Evaluation of estimates

Our aim is to evaluate the estimates produced by the SAEM algorithm. We fitted the datasets with

the simulation model and computed the relative bias and relative root mean square error (RMSE)

for each component of θ from 1000 replications of the trial described below for N = 40 and N = 200

subjects, respectively. The relative bias and RMSE on the 1000 data sets obtained for N = 40 and

N = 200 subjects are presented in Table 1. For N = 40 subjects, the estimates have very low bias
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Figure 1. Simulated dataset with N = 40 subjects of the biexponential model describing the HIV viral
load decrease under treatment.

Table I. Relative bias (%) and relative root mean square error (RMSE) (%) of the estimated parameters
evaluated by the SAEM algorithm from 1000 simulated trials with N = 40 and N = 200 subjects.

Parameters Bias (%) RMSE (%)
N = 40 N = 200 N = 40 N = 200

ln P1 0.006 -0.003 0.78 0.35
ln P2 0.01 -0.003 1.23 0.55
ln λ1 0.48 -0.01 12.92 5.75
ln λ2 -0.04 0.01 3.03 1.36
ω2

1 -2.45 -0.38 25.59 10.88
ω2

2 -3.38 -1.21 29.02 12.19
ω2

3 -1.75 -0.17 22.94 10.60
ω2

4 -1.34 0.16 25.09 11.64
σ2 0.10 0.15 15.82 6.91

(<1% for the fixed effects, <5% for the variance parameters). The RMSE is satisfactory for the

fixed effects (<13%) as well as for the variance parameters (<30%). As expected with N = 200

subjects, both the bias and the RMSE decrease with increasing subject number.

The SE estimated for each component of θ̂ by the SAEM algorithm are compared with the “true”

SE evaluated by the empirical standard deviation of the 1000 parameter estimates obtained for the

simulated datasets. In Figure 2, for each component of θ, the 1000 estimated SEs and the true SEs

with N = 40 datasets are plotted. For all parameters, the SEs estimated by SAEM are very close

to the true SEs. Similar results are observed with N = 200 datasets.

The influence of the size T of the random samples used to evaluate the likelihood by importance

sampling is studied for one dataset with N = 200 subjects. The log-likelihood is evaluated

successively for different sample sizes T = 1000 or 5000 or 10 000 or 50 000, with 10 replications
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Figure 2. Histograms of the 1000 relative SEs (%) estimated by SAEM for datasets with N=40 subjects.
The line represents an estimate of the “true” standard error estimated on 1000 replications.
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Figure 3. Log-likelihood estimates as a function of the sample size T used in the importance sampling
procedure with 10 replications for each T , for one dataset with N = 200 subjects.

for each T , using the Gaussian approximation of the individual posterior distribution from the

last 250 iterations of the SAEM algorithm. Results are reported in Figure 3 and show that the

variability of the approximation is reduced by increasing the sample size. Therefore, the likelihood

is evaluated by the importance sampling procedure with a sample size T = 10 000, as a balance

between estimate accuracy and time consumption.

4.3. Evaluation of statistical tests

We performed a Wald test and an LRT to test the difference between two treatment groups on

the viral load decrease, especially on the first viral decay rate, lnλ1, as proposed by Ding and Wu

[14]. We considered that the two groups are of equal size (i.e. 20 and 100 subjects per group when

N = 40 and N = 200 subjects, respectively). The parameter vector θ is θ = (µ, ω2, σ2) under H0
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and θ = (µ, β, ω2, σ2) under H1. We applied these tests using SAEM on the 1000 datasets simulated

with β = 0 and evaluated the type I error of both the Wald test and the LRT by the proportion

of trials for which H0 is rejected, because these datasets are simulated without any treatment

effect. We then evaluated the power of these tests for a treatment effect of almost 30% between

the 2 treatment groups on the parameter lnλ1 (i.e. the alternative hypothesis H1: {β ≥ β1} with

β1 = 0.262). The power is estimated by the proportion of trials for which H0 is rejected, within

1000 datasets simulated with a treatment effect β1 = 0.262 on lnλ1.

The estimation of the type I error for a nominal value of 5% and the powers are given in Table

2 for datasets with 20 or 100 subjects per group. The estimated type I errors are close to 5%, and

Table II. Evaluation on 1000 simulated datasets with 20 or 100 subjects per group of the type I error
and the power of the Wald test and LRT for a treatment effect on the first decay rate.

Type I error Power
Number of subjects per group 20 100 20 100
Wald test 4.0% 4.5% 37.5 % 90.4%
LRT 5.8% 5.6% 38.2 % 85.4%

given the dataset number of replications, do not differ significantly from the expected 5% value.

The estimated powers are similar for the 2 tests and, as expected, are lower with N = 40 subjects

than with N = 200 subjects.

4.4. Sample size computation example

The method proposed in section 3.5 to evaluate the power of the Wald test is applied to the model,

the parameter values and the sampling design detailed above, for a difference of 30% between the

2 treatment groups in the parameter lnλ1 (i.e. β1 = 0.262). A dataset is simulated with 2 groups

of 5000 subjects (i.e. N = 10000 subjects), and with a treatment effect β1 on lnλ1. This dataset is

analyzed using the SAEM algorithm to evaluate the Fisher information matrix. A SE(β̂) = 0.0112

is obtained for 5 000 subjects per group. Applying equation (4), a sample size of 20 subjects per

group (N = 40) provides a power of 32%, and a sample size of 100 subjects per group (N = 200)

provides a power of 92%. These 2 values are close to the 2 estimated powers, obtained with the

simulation study for the Wald test, of 37% and 90% respectively. Finally, the minimum sample

size required to ensure a power of at least 80% is 70 subjects per group (N = 140). These results

illustrate the ability of the SAEM approach to predict the SE of a fixed effect and the power of

the Wald test to compute the minimum sample size required for a given power.
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5. Effect of ritonavir on the indinavir pharmacokinetics in the COPHAR1-ANRS102 trial

5.1. Material and Methods

The COPHAR1-ANRS102 study was an open, multi-center, prospective trial including HIV-

infected adults given an antiretroviral combination of at least 3 drugs, one being either indinavir or

nelfinavir. Patients were required to have a baseline plasma HIV RNA below 200 copies/mL and to

have maintained the same antiretroviral treatment for 6 months. Data on indinavir concentration

were obtained for 45 patients who received different dosages of indinavir: 31 patients, indinavir

alone three times a day (for most, 800 mg), and 14 patients indinavir twice a day (for most, 800

mg) with a booster dose of 100mg of ritonavir. From each patient, 5 blood samples were collected

for the indinavir concentrations: a sample before indinavir administration and samples at 0.5, 1,

3 and 6 hours after indinavir administration. More details on this trial can be found in Goujard

et al. [33]. The concentration data of the indinavir group were analyzed with an NLMEM and the

FOCE algorithm implemented in the WinNonMix software by Brendel et al [34].

The aim of the present analysis is to evaluate the effect of the co-administration of ritonavir on the

pharmacokinetic parameters of indinavir using the SAEM algorithm and the tests developed. The

results are compared to those obtained with the adaptative Gaussian quadrature (AGQ) method

implemented in the SAS procedure NLMIXED.

The pharmacokinetic statistical model proposed by Brendel et al [34] was used, which is a one-

compartment model with first-order absorption and first-order elimination at steady-state:

f(φ, t) =
Dka

V ka − Cl

(
e−

Cl
V

t

(1 − e−
Cl
V

τ )
−

e−kat

(1 − e−kaτ )

)

where ka is the first-order absorption rate constant, Cl the oral clearance, V the oral volume

distribution and τ the delay between 2 drug administrations fixed to 12 and 8 h for patients

receiving ritonavir or not, respectively. The individual parameters are φ = (lnV, ln ka, ln Cl). A

diagonal variance matrix Ω and a homoscedastic error model were used. The Wald test was used

to test the effect of ritonavir administration on the fixed effects ka, Cl and V . The vector θ was

estimated under H1 with the SAEM algorithm and the procedure NLMIXED.

5.2. Results

Concentration data are displayed in Figure 4. The SAS procedure NLMIXED failed to estimate the
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Figure 4. Observed individual indinavir concentrations: (+) and (∆) for patients receiving ritonavir or
not respectively; predicted mean curves obtained with SAEM: dotted line and plain line for patients

receiving ritonavir or not respectively.

Table III. Pharmacokinetic parameters of indinavir (estimate, SE (%) and p-value of the Wald test)
estimated with the SAEM and the adaptative Gaussian quadrature (AGQ) algorithms

SAEM AGQ
Parameters Estimate SE (%) p-value Estimate SE (%) p-value
V (L) 46.70 32 43.80 22
ka (h−1) 0.76 22 0.78 14
Cl (L/h) 37.80 7 42.14 7
βV -0.59 89 0.154 -0.24 205 0.628
βka

-0.90 32 0.002 -0.80 30 0.002
βCl -0.66 21 <.001 -0.62 22 <.001
ω2

V 1.22 55 1.22 40
ω2

Cl 0.05 50 0.07 51
σ2 2.40 12 2.77 12

variability on ka which has to be fixed to 0. The SAEM algorithm succeeded in the estimation of all

the parameters and estimated the ka variability to 10−7. Therefore, a model without a variability

on ka was considered with both estimation methods. The parameters estimated by the SAEM and

the AGQ methods for this model are presented in Table 3. To ensure convergence, 2000 iterations

were used for the SAEM algorithm and 30 nodes were used with the SAS procedure NLMIXED.

It takes about 90 s CPU time for the SAEM algorithm and 400 s CPU time for the procedure

NLMIXED to run on a conventional Intel Pentium IV 2.8 GHz workstation.

A significant effect of co-medication with ritonavir was found with the 2 methods on ln ka and

ln Cl (p < 0.01), resulting in a decrease of 0.41/h and 0.44/h of ka with the SAEM and the AGQ

method, respectively, and a decrease of 0.51 L/h and 0.53 L/h of Cl with the SAEM and the AGQ

method, respectively, when patients received ritonavir. The effect of ritonavir on V is not significant

with both methods. The log-likelihood evaluated by the importance sampling procedure was equal
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to -469.6 at the estimates obtained with SAEM and equal to -472.1 at the estimates obtained with

the AGQ method. The predicted concentrations of indinavir with and without ritonavir evaluated

at the fixed effect values obtained with SAEM are overlayed on the plot of concentrations data

of Figure 4. This graph illustrates the slower decrease in indinavir concentration when it is co-

administered with ritonavir.

6. Discussion

In this paper, we propose statistical tests for covariate effects in NLMEMs adapted to non-linear

longitudinal data analysis. Because these tests take into account all the data, they are obviously

more powerful than tests using only the final measurements. In the context of NLMEMs, several

tests taking into account all the data have been proposed. However, those based on approximate

methods have poor properties, especially with increase of the type I error. More recently, tests

from numerical integration based methods, such as the adaptative Gaussian quadratures have

also been proposed, even though they can be limited by slow convergence when the number of

parameters is large. We propose here statistical tests based on the SAEM algorithm, which has good

computational properties. The SAEM algorithm and the statistical tests proposed in this paper are

implemented in a Matlab function called MONOLIX and freely available on http://mahery.math.u-

psud.fr/∼lavielle/monolix. The simulation study illustrates the accuracy of the SAEM algorithm to

fit non-linear longitudinal data in the context of HIV viral load decrease, the parameter estimates

being unbiased and with small RMSE. The SEs of the parameters are evaluated from the Fisher

information matrix. We propose an estimation of this matrix with the stochastic approximation

procedure of the SAEM algorithm and Louis’ principle [29]. Results of the simulation study show

that the SE estimates are very close to the “true” SEs evaluated on 1000 simulated datasets. Kuhn

and Lavielle [27] propose to estimate the likelihood with a simple Monte Carlo procedure, but

this method provides poor estimates and is prone to computational instabilities. To avoid this

problem, we propose an importance sampling approach, with a Gaussian approximation of the

conditional posterior distribution used to sample the individual parameter. Hence, the Wald test

and the LRT based on these Fisher information matrix and likelihood estimation procedures have

accurate properties, especially the obtained type I errors are close to the expected threshold of 5%.

Another critical issue for NLMEMs is the computation of the minimum sample size required

to observe a significant covariate effect on a fixed effect parameter with the Wald test. This issue
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requires evaluation of the expected SE for this covariate effect. Kang et al. [30] propose an analytic

evaluation based on the linearization of the model, a method to be compared with the extension of

the PFIM function for covariates proposed by Retout et al. [35]. However Kang et al. [30] show that

this method underestimates the power of the test when the random effect variability increases. An

alternative to this linearization method is to compute the expected Fisher information matrix with

the SAEM estimate. A large dataset is simulated to be close to asymptotic results, from which the

Fisher information matrix is estimated using SAEM. We show on the HIV example that the power

predicted by this method is close to that evaluated on the simulation study. In this example, the

same elementary design is used in every patient. This can easily be extended when the population

design is composed of different groups of elementary designs [30].

Finally, the SAEM algorithm and the proposed tests are used to analyze the indinavir

pharmacokinetics and to test the effect of the co-administration of ritonavir in HIV infected patients

from the COPHAR 1-ANRS102 trial. As expected, a significant effect of ritonavir co-administration

is found on the absorption and the elimination of indinavir [34]. Similar results were obtained with

the two methods on this model. However models with more random effects may be difficult to

analyse with the AGQ method.

The SAEM algorithm provides accurate estimates when working with NLMEMs and may be

applied to even more difficult issues. For instance, when measuring a biological response such

as a concentration or a viral load, the observations may be left-censored, due to the limits of

quantification of the measuring equipment. We extended the SAEM algorithm to this case, the

left-censored data being considered as non-observed data as well as the random effects [36].
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